info prev up next book cdrom email home

Trigonometry Values Pi/10


$\displaystyle \sin \left({\pi\over 10}\right)$ $\textstyle =$ $\displaystyle \sin\left({{1\over 2}\cdot{\pi\over 5}}\right)= \sqrt{{\textstyle{1\over 2}}\left[{1-\cos\left({\pi\over 5}\right)}\right]}$  
  $\textstyle =$ $\displaystyle \sqrt{{\textstyle{1\over 2}}[1-{\textstyle{1\over 4}}(1+\sqrt{5}\,)]} = {\textstyle{1\over 4}}(\sqrt{5}-1).$ (1)

So we have
$\displaystyle \cos\left({\pi\over 10}\right)$ $\textstyle =$ $\displaystyle \cos\left({{1\over 2}\cdot {\pi\over 5}}\right)=\sqrt{{1\over 2}\left[{1+\cos\left({\pi\over 5}\right)}\right]}$  
  $\textstyle =$ $\displaystyle \sqrt{{\textstyle{1\over 2}}[1+{\textstyle{1\over 4}}(1+\sqrt{5}\,)]}$  
  $\textstyle =$ $\displaystyle {\textstyle{1\over 4}}\sqrt{10+2\sqrt{5}},$ (2)

and
\begin{displaymath}
\tan\left({ \pi\over 10}\right)= \sqrt{3-\sqrt{5}\over 5+\sqrt{5}} = {\textstyle{1\over 5}}\sqrt{25-10\sqrt{5}}.
\end{displaymath} (3)

Summarizing,
$\displaystyle \sin \left({\pi\over 10}\right)$ $\textstyle =$ $\displaystyle {\textstyle{1\over 4}}(\sqrt{5}-1)$ (4)
$\displaystyle \cos\left({\pi\over 10}\right)$ $\textstyle =$ $\displaystyle {\textstyle{1\over 4}}\sqrt{10+2\sqrt{5}}$ (5)
$\displaystyle \tan\left({ \pi\over 10}\right)$ $\textstyle =$ $\displaystyle {\textstyle{1\over 5}}\sqrt{25-10\sqrt{5}}$ (6)
$\displaystyle \sin\left({3\pi\over 10}\right)$ $\textstyle =$ $\displaystyle {\textstyle{1\over 4}}(1+\sqrt{5}\,)$ (7)
$\displaystyle \cos\left({3\pi\over 10}\right)$ $\textstyle =$ $\displaystyle {\textstyle{1\over 4}}\sqrt{10-2\sqrt{5}}$ (8)
$\displaystyle \tan\left({3\pi\over 10}\right)$ $\textstyle =$ $\displaystyle {\textstyle{1\over 5}}\sqrt{25+10\sqrt{5}}.$ (9)


An interesting near-identity is given by

\begin{displaymath}
{1\over 4}\left[{\cos({\textstyle{1\over 10}})+\cosh({\texts...
...}\,)\cosh({\textstyle{1\over 20}}\sqrt{2}\,)}\right]\approx 1.
\end{displaymath} (10)

In fact, the left-hand side is approximately equal to $1+2.480\times 10^{-13}$.

See also Decagon, Decagram




© 1996-9 Eric W. Weisstein
1999-05-26