info prev up next book cdrom email home

Trinoid

\begin{figure}\begin{center}\BoxedEPSF{trinoid.epsf scaled 800}\end{center}\end{figure}

A Minimal Surface discovered by L. P. M. Jorge and W. Meeks III in 1983 with Enneper-Weierstraß Parameterization

$\displaystyle f$ $\textstyle =$ $\displaystyle {1\over(\zeta^3-1)^2}$ (1)
$\displaystyle g$ $\textstyle =$ $\displaystyle \zeta^2$ (2)

(Dickson 1990). Explicitly, it is given by


$\displaystyle x$ $\textstyle =$ $\displaystyle \Re\left[{{r e^{i\theta}\over 3(1 + r e^{i\theta} + r^2 e^{2i\the...
...\theta}-1)\over 9} + {2\ln(1 + r e^{i\theta} + r^2e^{2i\theta})\over 9}}\right]$ (3)
$\displaystyle y$ $\textstyle =$ $\displaystyle -{\textstyle{1\over 9}}\Im\left[{{-3re^{i\theta}(1+re^{i\theta})\...
...-1} \left({1+2re^{i\theta}\over\sqrt{3}}\right)\over r^3e^{3i\theta}-1}}\right]$ (4)
$\displaystyle z$ $\textstyle =$ $\displaystyle \Re\left[{-{2\over 3} - {2\over 3(r^3 e^{3i\theta}-1)}}\right],$ (5)

for $\theta\in [0,2\pi)$ and $r\in [0, 4]$.

See also Minimal Surface


References

Dickson, S. ``Minimal Surfaces.'' Mathematica J. 1, 38-40, 1990.

mathematica.gif Wolfram Research ``Mathematica Version 2.0 Graphics Gallery.'' http://www.mathsource.com/cgi-bin/MathSource/Applications/Graphics/3D/0207-155.




© 1996-9 Eric W. Weisstein
1999-05-26