A transform which localizes a function both in space and scaling and has some desirable properties compared to the Fourier Transform. The transform is based on a Wavelet Matrix, which can be computed more quickly than the analogous Fourier Matrix.

**References**

Blair, D. and MathSoft, Inc. ``Wavelet Resources.'' http://www.mathsoft.com/wavelets.html.

Daubechies, I. *Ten Lectures on Wavelets.* Philadelphia, PA: SIAM, 1992.

DeVore, R.; Jawerth, B.; and Lucier, B. ``Images Compression through Wavelet Transform Coding.''
*IEEE Trans. Information Th.* **38**, 719-746, 1992.

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. ``Wavelet Transforms.'' §13.10 in
*Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed.* Cambridge, England: Cambridge
University Press, pp. 584-599, 1992.

Strang, G. ``Wavelet Transforms Versus Fourier Transforms.'' *Bull. Amer. Math. Soc.* **28**, 288-305, 1993.

© 1996-9

1999-05-26