Processing math: 100%

am( z, m )

The Jacobi amplitude function of z and parameter m in SageMath. Defined as the inverse of the incomplete elliptic integral of the first kind:

u=ϕ0dθ1msin2θam(u|m)=ϕ

Note that all Jacobi elliptic functions in Math use the parameter rather than the elliptic modulus k, which is related to the parameter by m=k2.

Real part on the real axis:

m
-5.0 -2.5 2.5 5.0 -5 -4 -3 -2 -1 1 2 3 4

Imaginary part on the real axis is zero.

Real part on the imaginary axis is zero.

Imaginary part on the imaginary axis:

m
-5.0 -2.5 2.5 5.0 -5.0 -2.5 2.5 5.0

Real part on the complex plane:

m

Imaginary part on the complex plane:

m

Absolute value on the complex plane:

m

Related functions:   sn   cn   dn

Function category: elliptic functions