wrightOmega( z )

The Wright omega function of z in Math. Defined in terms of the Lambert W function by

ω(z)=WIm(z)π2π(ez)

Real part on the real axis:

-5.0 -2.5 0.0 2.5 5.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Imaginary part on the real axis is zero.

Real part on the imaginary axis:

-5.0 -2.5 2.5 5.0 -1.00 -0.75 -0.50 -0.25 0.25 0.50

Imaginary part on the imaginary axis:

-5.0 -2.5 2.5 5.0 -3 -2 -1 1 2 3

Real part on the complex plane:

Imaginary part on the complex plane:

Absolute value on the complex plane:

Related functions:   exp   lambertW

Function category: logarithmic functions