※中学数学公式定律手册※===>高中代数==>排列、组合、二项式定理 上一页 下一页 | |||
分 类 计 数 原 理 | 分 步 计 数 原理 | ||
做一件事,完成它有n类不同的办法。第一类办法中有m1种方法,第二类办法中有m2种方法……,第n类办法中有mn种方法,则完成这件事共有:N=m1+m2+…+mn种方法。 | 做一件事,完成它需要分成n个步骤。第一步中有m1种方法,第二步中有m2种方法……,第n步中有mn种方法,则完成这件事共有:N=m1•m2•…•mn种方法。 | ||
注意:处理实际问题时,要善于区分是用分类计数原理还是分步计数原理,这两个原理的标志是“分类”还是“分步骤”。 |
|||
排 列 | 组 合 | ||
从n个不同的元素中取m(m≤n)个元素,按照一定的顺序排成一排,叫做从n个不同的元素中取m个元素的排列。 | 从n个不同的元素中,任取m(m≤n)个元素并成一组,叫做从n个不同的元素中取m个元素的组合。 | ||
排 列 数 |
组 合 数 | ||
从n个不同的元素中取m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Pnm |
从n个不同的元素中取m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,记为Cnm | ||
选 排 列 数 |
全 排 列 数 |
||
二 项 式 定 理 |
|||
二项展开式的性质 |
(1)项数:n+1项
(2)指数:各项中的a的指数由n起依次减少1,直至0为止;b的指出从0起依次增加1,直至n为止。而每项中a与b的指数之和均等于n 。 (3)二项式系数:
各奇数项的二项式数之和等于各偶数项的二项式的系数之和 |
||