Processing math: 100%
 AI math handbook calculator - Fractional Calculus Computer Algebra System software Home | list | math | function | coding | graphics | example | help | 中文
+ + + =

Integral Table 2/2

<= prev page
  • Integrator

    Table of Basic Integrals

    Basic Forms

    xndx=1n+1xn+1,n1 (1)
    1xdx=ln|x| (2)
    udv=uvvdu (3)
    1ax+bdx=1aln|ax+b| (4)

    Integrals of Rational Functions

    1(x+a)2dx=1x+a (5)
    (x+a)ndx=(x+a)n+1n+1,n1 (6)
    x(x+a)ndx=(x+a)n+1((n+1)xa)(n+1)(n+2) (7)
    11+x2dx=tan1x (8)
    1a2+x2dx=1atan1xa (9)
    xa2+x2dx=12ln|a2+x2| (10)
    x2a2+x2dx=xatan1xa (11)
    x3a2+x2dx=12x212a2ln|a2+x2| (12)
    1ax2+bx+cdx=24acb2tan12ax+b4acb2 (13)
    1(x+a)(x+b)dx=1balna+xb+x, ab (14)
    x(x+a)2dx=aa+x+ln|a+x| (15)
    xax2+bx+cdx=12aln|ax2+bx+c|ba4acb2tan12ax+b4acb2 (16)

    Integrals with Roots

    xadx=23(xa)32 (17)
    1x±adx=2x±a (18)
    1axdx=2ax (19)
    xxadx={2a3(xa)32+25(xa)52, or23x(xa)32415(xa)52, or215(2a+3x)(xa)32 (20)
    ax+bdx=(2b3a+2x3)ax+b (21)
    (ax+b)32dx=25a(ax+b)52 (22)
    xx±adx=23(x2a)x±a (23)
    xaxdx=x(ax)atan1x(ax)xa (24)
    xa+xdx=x(a+x)aln[x+x+a] (25)
    xax+bdx=215a2(2b2+abx+3a2x2)ax+b (26)
    x(ax+b)dx=14a32[(2ax+b)ax(ax+b)b2ln|ax+a(ax+b)|] (27)
    x3(ax+b)dx=[b12ab28a2x+x3]x3(ax+b)+b38a52ln|ax+a(ax+b)| (28)
    x2±a2dx=12xx2±a2±12a2ln|x+x2±a2| (29)
    a2x2dx=12xa2x2+12a2tan1xa2x2 (30)
    xx2±a2dx=13(x2±a2)32 (31)
    1x2±a2dx=ln|x+x2±a2| (32)
    1a2x2dx=sin1xa (33)
    xx2±a2dx=x2±a2 (34)
    xa2x2dx=a2x2 (35)
    x2x2±a2dx=12xx2±a212a2ln|x+x2±a2| (36)
    ax2+bx+cdx=b+2ax4aax2+bx+c+4acb28a32ln|2ax+b+2a(ax2+bx+c)| (37)
    xax2+bx+cdx=148a52(2aax2+bx+c(3b2+2abx+8a(c+ax2))+3(b34abc)ln|b+2ax+2aax2+bx+c|) (38)
    1ax2+bx+cdx=1aln|2ax+b+2a(ax2+bx+c)| (39)
    xax2+bx+cdx=1aax2+bx+cb2a32ln|2ax+b+2a(ax2+bx+c)| (40)
    dx(a2+x2)32=xa2a2+x2 (41)

    Integrals with Logarithms

    lnaxdx=xlnaxx (42)
    xlnxdx=12x2lnxx24 (43)
    x2lnxdx=13x3lnxx39 (44)
    xnlnxdx=xn+1(lnxn+11(n+1)2),n1 (45)
    lnaxxdx=12(lnax)2 (46)
    lnxx2dx=1xlnxx (47)
    ln(ax+b)dx=(x+ba)ln(ax+b)x,a0 (48)
    ln(x2+a2)dx=xln(x2+a2)+2atan1xa2x (49)
    ln(x2a2)dx=xln(x2a2)+alnx+axa2x (50)
    ln(ax2+bx+c)dx=1a4acb2tan12ax+b4acb22x+(b2a+x)ln(ax2+bx+c) (51)
    xln(ax+b)dx=bx2a14x2+12(x2b2a2)ln(ax+b) (52)
    xln(a2b2x2)dx=12x2+12(x2a2b2)ln(a2b2x2) (53)
    (lnx)2dx=2x2xlnx+x(lnx)2 (54)
    (lnx)3dx=6x+x(lnx)33x(lnx)2+6xlnx (55)
    x(lnx)2dx=x24+12x2(lnx)212x2lnx (56)
    x2(lnx)2dx=2x327+13x3(lnx)229x3lnx (57)

    Integrals with Exponentials

    eaxdx=1aeax (58)
    xeaxdx=1axeax+iπ2a32erf(iax), where erf(x)=2πx0et2dt (59)
    xexdx=(x1)ex (60)
    xeaxdx=(xa1a2)eax (61)
    x2exdx=(x22x+2)ex (62)
    x2eaxdx=(x2a2xa2+2a3)eax (63)
    x3exdx=(x33x2+6x6)ex (64)
    xneaxdx=xneaxanaxn1eaxdx (65)
    xneaxdx=(1)nan+1Γ[1+n,ax], where Γ(a,x)=xta1etdt (66)
    eax2dx=iπ2aerf(ixa) (67)
    eax2dx=π2aerf(xa) (68)
    xeax2dx=12aeax2 (69)
    x2eax2dx=14πa3erf(xa)x2aeax2 (70)

    Integrals with Trigonometric Functions

    sinaxdx=1acosax (71)
    sin2axdx=x2sin2ax4a (72)
    sin3axdx=3cosax4a+cos3ax12a (73)
    sinnaxdx=1acosax2F1[12,1n2,32,cos2ax] (74)
    cosaxdx=1asinax (75)
    cos2axdx=x2+sin2ax4a (76)
    cos3axdx=3sinax4a+sin3ax12a (77)
    cospaxdx=1a(1+p)cos1+pax×2F1[1+p2,12,3+p2,cos2ax] (78)
    cosxsinxdx=12sin2x+c1=12cos2x+c2=14cos2x+c3 (79)
    cosaxsinbxdx=cos[(ab)x]2(ab)cos[(a+b)x]2(a+b),ab (80)
    sin2axcosbxdx=sin[(2ab)x]4(2ab)+sinbx2bsin[(2a+b)x]4(2a+b) (81)
    sin2xcosxdx=13sin3x (82)
    cos2axsinbxdx=cos[(2ab)x]4(2ab)cosbx2bcos[(2a+b)x]4(2a+b) (83)
    cos2axsinaxdx=13acos3ax (84)
    sin2axcos2bxdx=x4sin2ax8asin[2(ab)x]16(ab)+sin2bx8bsin[2(a+b)x]16(a+b) (85)
    sin2axcos2axdx=x8sin4ax32a (86)
    tanaxdx=1alncosax (87)
    tan2axdx=x+1atanax (88)
    tannaxdx=tann+1axa(1+n)×2F1(n+12,1,n+32,tan2ax) (89)
    tan3axdx=1alncosax+12asec2ax (90)
    secxdx=ln|secx+tanx|=2tanh1(tanx2) (91)
    sec2axdx=1atanax (92)
    sec3xdx=12secxtanx+12ln|secx+tanx| (93)
    secxtanxdx=secx (94)
    sec2xtanxdx=12sec2x (95)
    secnxtanxdx=1nsecnx,n0 (96)
    cscxdx=ln|tanx2|=ln|cscxcotx|+C (97)
    csc2axdx=1acotax (98)
    csc3xdx=12cotxcscx+12ln|cscxcotx| (99)
    cscnxcotxdx=1ncscnx,n0 (100)
    secxcscxdx=ln|tanx| (101)

    Products of Trigonometric Functions and Monomials

    xcosxdx=cosx+xsinx (102)
    xcosaxdx=1a2cosax+xasinax (103)
    x2cosxdx=2xcosx+(x22)sinx (104)
    x2cosaxdx=2xcosaxa2+a2x22a3sinax (105)
    xncosxdx=12(i)n+1[Γ(n+1,ix)+(1)nΓ(n+1,ix)] (106)
    xncosaxdx=12(ia)1n[(1)nΓ(n+1,iax)Γ(n+1,ixa)] (107)
    xsinxdx=xcosx+sinx (108)
    xsinaxdx=xcosaxa+sinaxa2 (109)
    x2sinxdx=(2x2)cosx+2xsinx (110)
    x2sinaxdx=2a2x2a3cosax+2xsinaxa2 (111)
    xnsinxdx=12(i)n[Γ(n+1,ix)(1)nΓ(n+1,ix)] (112)
    xcos2xdx=x24+18cos2x+14xsin2x (113)
    xsin2xdx=x2418cos2x14xsin2x (114)
    xtan2xdx=x22+lncosx+xtanx (115)
    xsec2xdx=lncosx+xtanx (116)

    Products of Trigonometric Functions and Exponentials

    exsinxdx=12ex(sinxcosx) (117)
    ebxsinaxdx=1a2+b2ebx(bsinaxacosax) (118)
    excosxdx=12ex(sinx+cosx) (119)
    ebxcosaxdx=1a2+b2ebx(asinax+bcosax) (120)
    xexsinxdx=12ex(cosxxcosx+xsinx) (121)
    xexcosxdx=12ex(xcosxsinx+xsinx) (122)

    Integrals of Hyperbolic Functions

    coshaxdx=1asinhax (123)
    eaxcoshbxdx={eaxa2b2[acoshbxbsinhbx]abe2ax4a+x2a=b (124)
    sinhaxdx=1acoshax (125)
    eaxsinhbxdx={eaxa2b2[bcoshbx+asinhbx]abe2ax4ax2a=b (126)
    tanhaxdx=1alncoshax (127)
    eaxtanhbxdx={e(a+2b)x(a+2b)(2F1)[1+a2b,1,2+a2b,e2bx]eaxa(2F1)[1,a2b,1+a2b,e2bx]abeax2tan1[eax]aa=b (128)
    cosaxcoshbxdx=1a2+b2[asinaxcoshbx+bcosaxsinhbx] (129)
    cosaxsinhbxdx=1a2+b2[bcosaxcoshbx+asinaxsinhbx] (130)
    sinaxcoshbxdx=1a2+b2[acosaxcoshbx+bsinaxsinhbx] (131)
    sinaxsinhbxdx=1a2+b2[bcoshbxsinaxacosaxsinhbx] (132)
    sinhaxcoshaxdx=14a[2ax+sinh2ax] (133)
    sinhaxcoshbxdx=1b2a2[bcoshbxsinhaxacoshaxsinhbx] (134)

    
    Home | list | wiki | about | donate | index | forum | help | chat | translated from Chinese | 中文