∫xndx=1n+1xn+1,n≠−1 | (1) |
∫1xdx=ln|x| | (2) |
∫udv=uv−∫vdu | (3) |
∫1ax+bdx=1aln|ax+b| | (4) |
∫1(x+a)2dx=−1x+a | (5) |
∫(x+a)ndx=(x+a)n+1n+1,n≠−1 | (6) |
∫x(x+a)ndx=(x+a)n+1((n+1)x−a)(n+1)(n+2) | (7) |
∫11+x2dx=tan−1x | (8) |
∫1a2+x2dx=1atan−1xa | (9) |
∫xa2+x2dx=12ln|a2+x2| | (10) |
∫x2a2+x2dx=x−atan−1xa | (11) |
∫x3a2+x2dx=12x2−12a2ln|a2+x2| | (12) |
∫1ax2+bx+cdx=2√4ac−b2tan−12ax+b√4ac−b2 | (13) |
∫1(x+a)(x+b)dx=1b−alna+xb+x, a≠b | (14) |
∫x(x+a)2dx=aa+x+ln|a+x| | (15) |
∫xax2+bx+cdx=12aln|ax2+bx+c|−ba√4ac−b2tan−12ax+b√4ac−b2 | (16) |
∫√x−adx=23(x−a)3∕2 | (17) |
∫1√x±adx=2√x±a | (18) |
∫1√a−xdx=−2√a−x | (19) |
∫x√x−adx={2a3(x−a)3∕2+25(x−a)5∕2, or23x(x−a)3∕2−415(x−a)5∕2, or215(2a+3x)(x−a)3∕2 | (20) |
∫√ax+bdx=(2b3a+2x3)√ax+b | (21) |
∫(ax+b)3∕2dx=25a(ax+b)5∕2 | (22) |
∫x√x±adx=23(x∓2a)√x±a | (23) |
∫√xa−xdx=−√x(a−x)−atan−1√x(a−x)x−a | (24) |
∫√xa+xdx=√x(a+x)−aln[√x+√x+a] | (25) |
∫x√ax+bdx=215a2(−2b2+abx+3a2x2)√ax+b | (26) |
∫√x(ax+b)dx=14a3∕2[(2ax+b)√ax(ax+b)−b2ln|a√x+√a(ax+b)|] | (27) |
∫√x3(ax+b)dx=[b12a−b28a2x+x3]√x3(ax+b)+b38a5∕2ln|a√x+√a(ax+b)| | (28) |
∫√x2±a2dx=12x√x2±a2±12a2ln|x+√x2±a2| | (29) |
∫√a2−x2dx=12x√a2−x2+12a2tan−1x√a2−x2 | (30) |
∫x√x2±a2dx=13(x2±a2)3∕2 | (31) |
∫1√x2±a2dx=ln|x+√x2±a2| | (32) |
∫1√a2−x2dx=sin−1xa | (33) |
∫x√x2±a2dx=√x2±a2 | (34) |
∫x√a2−x2dx=−√a2−x2 | (35) |
∫x2√x2±a2dx=12x√x2±a2∓12a2ln|x+√x2±a2| | (36) |
∫√ax2+bx+cdx=b+2ax4a√ax2+bx+c+4ac−b28a3∕2ln|2ax+b+2√a(ax2+bx+c)| | (37) |
∫x√ax2+bx+cdx=148a5∕2(2√a√ax2+bx+c(−3b2+2abx+8a(c+ax2))+3(b3−4abc)ln|b+2ax+2√a√ax2+bx+c|) | (38) |
∫1√ax2+bx+cdx=1√aln|2ax+b+2√a(ax2+bx+c)| | (39) |
∫x√ax2+bx+cdx=1a√ax2+bx+c−b2a3∕2ln|2ax+b+2√a(ax2+bx+c)| | (40) |
∫dx(a2+x2)3∕2=xa2√a2+x2 | (41) |
∫lnaxdx=xlnax−x | (42) |
∫xlnxdx=12x2lnx−x24 | (43) |
∫x2lnxdx=13x3lnx−x39 | (44) |
∫xnlnxdx=xn+1(lnxn+1−1(n+1)2),n≠−1 | (45) |
∫lnaxxdx=12(lnax)2 | (46) |
∫lnxx2dx=−1x−lnxx | (47) |
∫ln(ax+b)dx=(x+ba)ln(ax+b)−x,a≠0 | (48) |
∫ln(x2+a2)dx=xln(x2+a2)+2atan−1xa−2x | (49) |
∫ln(x2−a2)dx=xln(x2−a2)+alnx+ax−a−2x | (50) |
∫ln(ax2+bx+c)dx=1a√4ac−b2tan−12ax+b√4ac−b2−2x+(b2a+x)ln(ax2+bx+c) | (51) |
∫xln(ax+b)dx=bx2a−14x2+12(x2−b2a2)ln(ax+b) | (52) |
∫xln(a2−b2x2)dx=−12x2+12(x2−a2b2)ln(a2−b2x2) | (53) |
∫(lnx)2dx=2x−2xlnx+x(lnx)2 | (54) |
∫(lnx)3dx=−6x+x(lnx)3−3x(lnx)2+6xlnx | (55) |
∫x(lnx)2dx=x24+12x2(lnx)2−12x2lnx | (56) |
∫x2(lnx)2dx=2x327+13x3(lnx)2−29x3lnx | (57) |
∫eaxdx=1aeax | (58) |
∫√xeaxdx=1a√xeax+i√π2a3∕2erf(i√ax), where erf(x)=2√π∫x0e−t2dt | (59) |
∫xexdx=(x−1)ex | (60) |
∫xeaxdx=(xa−1a2)eax | (61) |
∫x2exdx=(x2−2x+2)ex | (62) |
∫x2eaxdx=(x2a−2xa2+2a3)eax | (63) |
∫x3exdx=(x3−3x2+6x−6)ex | (64) |
∫xneaxdx=xneaxa−na∫xn−1eaxdx | (65) |
∫xneaxdx=(−1)nan+1Γ[1+n,−ax], where Γ(a,x)=∫∞xta−1e−tdt | (66) |
∫eax2dx=−i√π2√aerf(ix√a) | (67) |
∫e−ax2dx=√π2√aerf(x√a) | (68) |
∫xe−ax2dx=−12ae−ax2 | (69) |
∫x2e−ax2dx=14√πa3erf(x√a)−x2ae−ax2 | (70) |
∫sinaxdx=−1acosax | (71) |
∫sin2axdx=x2−sin2ax4a | (72) |
∫sin3axdx=−3cosax4a+cos3ax12a | (73) |
∫sinnaxdx=−1acosax2F1[12,1−n2,32,cos2ax] | (74) |
∫cosaxdx=1asinax | (75) |
∫cos2axdx=x2+sin2ax4a | (76) |
∫cos3axdx=3sinax4a+sin3ax12a | (77) |
∫cospaxdx=−1a(1+p)cos1+pax×2F1[1+p2,12,3+p2,cos2ax] | (78) |
∫cosxsinxdx=12sin2x+c1=−12cos2x+c2=−14cos2x+c3 | (79) |
∫cosaxsinbxdx=cos[(a−b)x]2(a−b)−cos[(a+b)x]2(a+b),a≠b | (80) |
∫sin2axcosbxdx=−sin[(2a−b)x]4(2a−b)+sinbx2b−sin[(2a+b)x]4(2a+b) | (81) |
∫sin2xcosxdx=13sin3x | (82) |
∫cos2axsinbxdx=cos[(2a−b)x]4(2a−b)−cosbx2b−cos[(2a+b)x]4(2a+b) | (83) |
∫cos2axsinaxdx=−13acos3ax | (84) |
∫sin2axcos2bxdx=x4−sin2ax8a−sin[2(a−b)x]16(a−b)+sin2bx8b−sin[2(a+b)x]16(a+b) | (85) |
∫sin2axcos2axdx=x8−sin4ax32a | (86) |
∫tanaxdx=−1alncosax | (87) |
∫tan2axdx=−x+1atanax | (88) |
∫tannaxdx=tann+1axa(1+n)×2F1(n+12,1,n+32,−tan2ax) | (89) |
∫tan3axdx=1alncosax+12asec2ax | (90) |
∫secxdx=ln|secx+tanx|=2tanh−1(tanx2) | (91) |
∫sec2axdx=1atanax | (92) |
∫sec3xdx=12secxtanx+12ln|secx+tanx| | (93) |
∫secxtanxdx=secx | (94) |
∫sec2xtanxdx=12sec2x | (95) |
∫secnxtanxdx=1nsecnx,n≠0 | (96) |
∫cscxdx=ln|tanx2|=ln|cscx−cotx|+C | (97) |
∫csc2axdx=−1acotax | (98) |
∫csc3xdx=−12cotxcscx+12ln|cscx−cotx| | (99) |
∫cscnxcotxdx=−1ncscnx,n≠0 | (100) |
∫secxcscxdx=ln|tanx| | (101) |
∫xcosxdx=cosx+xsinx | (102) |
∫xcosaxdx=1a2cosax+xasinax | (103) |
∫x2cosxdx=2xcosx+(x2−2)sinx | (104) |
∫x2cosaxdx=2xcosaxa2+a2x2−2a3sinax | (105) |
∫xncosxdx=−12(i)n+1[Γ(n+1,−ix)+(−1)nΓ(n+1,ix)] | (106) |
∫xncosaxdx=12(ia)1−n[(−1)nΓ(n+1,−iax)−Γ(n+1,ixa)] | (107) |
∫xsinxdx=−xcosx+sinx | (108) |
∫xsinaxdx=−xcosaxa+sinaxa2 | (109) |
∫x2sinxdx=(2−x2)cosx+2xsinx | (110) |
∫x2sinaxdx=2−a2x2a3cosax+2xsinaxa2 | (111) |
∫xnsinxdx=−12(i)n[Γ(n+1,−ix)−(−1)nΓ(n+1,−ix)] | (112) |
∫xcos2xdx=x24+18cos2x+14xsin2x | (113) |
∫xsin2xdx=x24−18cos2x−14xsin2x | (114) |
∫xtan2xdx=−x22+lncosx+xtanx | (115) |
∫xsec2xdx=lncosx+xtanx | (116) |
∫exsinxdx=12ex(sinx−cosx) | (117) |
∫ebxsinaxdx=1a2+b2ebx(bsinax−acosax) | (118) |
∫excosxdx=12ex(sinx+cosx) | (119) |
∫ebxcosaxdx=1a2+b2ebx(asinax+bcosax) | (120) |
∫xexsinxdx=12ex(cosx−xcosx+xsinx) | (121) |
∫xexcosxdx=12ex(xcosx−sinx+xsinx) | (122) |
∫coshaxdx=1asinhax | (123) |
∫eaxcoshbxdx={eaxa2−b2[acoshbx−bsinhbx]a≠be2ax4a+x2a=b | (124) |
∫sinhaxdx=1acoshax | (125) |
∫eaxsinhbxdx={eaxa2−b2[−bcoshbx+asinhbx]a≠be2ax4a−x2a=b | (126) |
∫tanhaxdx=1alncoshax | (127) |
∫eaxtanhbxdx={e(a+2b)x(a+2b)(2F1)[1+a2b,1,2+a2b,−e2bx]−eaxa(2F1)[1,a2b,1+a2b,−e2bx]a≠beax−2tan−1[eax]aa=b | (128) |
∫cosaxcoshbxdx=1a2+b2[asinaxcoshbx+bcosaxsinhbx] | (129) |
∫cosaxsinhbxdx=1a2+b2[bcosaxcoshbx+asinaxsinhbx] | (130) |
∫sinaxcoshbxdx=1a2+b2[−acosaxcoshbx+bsinaxsinhbx] | (131) |
∫sinaxsinhbxdx=1a2+b2[bcoshbxsinax−acosaxsinhbx] | (132) |
∫sinhaxcoshaxdx=14a[−2ax+sinh2ax] | (133) |
∫sinhaxcoshbxdx=1b2−a2[bcoshbxsinhax−acoshaxsinhbx] | (134) |