∫xndx=1n+1xn+1,n≠−1 | (1) |
∫1xdx=ln|x| | (2) |
∫udv=uv−∫vdu | (3) |
∫1ax+bdx=1aln|ax+b| | (4) |
∫1(x+a)2dx=−1x+a | (5) |
∫(x+a)ndx=(x+a)n+1n+1,n≠−1 | (6) |
∫x(x+a)ndx=(x+a)n+1((n+1)x−a)(n+1)(n+2) | (7) |
∫11+x2dx=tan−1x | (8) |
∫1a2+x2dx=1atan−1xa | (9) |
∫xa2+x2dx=12ln|a2+x2| | (10) |
∫x2a2+x2dx=x−atan−1xa | (11) |
∫x3a2+x2dx=12x2−12a2ln|a2+x2| | (12) |
∫1ax2+bx+cdx=2√4ac−b2tan−12ax+b√4ac−b2 | (13) |
∫1(x+a)(x+b)dx=1b−alna+xb+x, a≠b | (14) |
∫x(x+a)2dx=aa+x+ln|a+x| | (15) |
∫xax2+bx+cdx=12aln|ax2+bx+c|−ba√4ac−b2tan−12ax+b√4ac−b2 | (16) |
∫√x−adx=23(x−a)3∕2 | (17) |
∫1√x±adx=2√x±a | (18) |
∫1√a−xdx=−2√a−x | (19) |
∫x√x−adx={2a3(x−a)3∕2+25(x−a)5∕2, or23x(x−a)3∕2−415(x−a)5∕2, or215(2a+3x)(x−a)3∕2 | (20) |
∫√ax+bdx=(2b3a+2x3)√ax+b | (21) |
∫(ax+b)3∕2dx=25a(ax+b)5∕2 | (22) |
∫x√x±adx=23(x∓2a)√x±a | (23) |
∫√xa−xdx=−√x(a−x)−atan−1√x(a−x)x−a | (24) |
∫√xa+xdx=√x(a+x)−aln[√x+√x+a] | (25) |
∫x√ax+bdx=215a2(−2b2+abx+3a2x2)√ax+b | (26) |
∫√x(ax+b)dx=14a3∕2[(2ax+b)√ax(ax+b)−b2ln|a√x+√a(ax+b)|] | (27) |
∫√x3(ax+b)dx=[b12a−b28a2x+x3]√x3(ax+b)+b38a5∕2ln|a√x+√a(ax+b)| | (28) |
∫√x2±a2dx=12x√x2±a2±12a2ln|x+√x2±a2| | (29) |
∫√a2−x2dx=12x√a2−x2+12a2tan−1x√a2−x2 | (30) |
∫x√x2±a2dx=13(x2±a2)3∕2 | (31) |
∫1√x2±a2dx=ln|x+√x2±a2| | (32) |
∫1√a2−x2dx=sin−1xa | (33) |
∫x√x2±a2dx=√x2±a2 | (34) |
∫x√a2−x2dx=−√a2−x2 | (35) |
∫x2√x2±a2dx=12x√x2±a2∓12a2ln|x+√x2±a2| | (36) |
∫√ax2+bx+cdx=b+2ax4a√ax2+bx+c+4ac−b28a3∕2ln|2ax+b+2√a(ax2+bx+c)| | (37) |
∫x√ax2+bx+cdx=148a5∕2(2√a√ax2+bx+c(−3b2+2abx+8a(c+ax2))+3(b3−4abc)ln|b+2ax+2√a√ax2+bx+c|) | (38) |
∫1√ax2+bx+cdx=1√aln|2ax+b+2√a(ax2+bx+c)| | (39) |
∫x√ax2+bx+cdx=1a√ax2+bx+c−b2a3∕2ln|2ax+b+2√a(ax2+bx+c)| | (40) |
∫dx(a2+x2)3∕2=xa2√a2+x2 | (41) |
∫lnaxdx=xlnax−x | (42) |
∫xlnxdx=12x2lnx−x24 | (43) |
∫x2lnxdx=13x3lnx−x39 | (44) |
∫xnlnxdx=xn+1(lnxn+1−1(n+1)2),n≠−1 | (45) |
∫lnaxxdx=12(lnax)2 | (46) |
∫lnxx2dx=−1x−lnxx | (47) |
∫ln(ax+b)dx=(x+ba)ln(ax+b)−x,a≠0 | (48) |
∫ln(x2+a2)dx=xln(x2+a2)+2atan−1xa−2x | (49) |
∫ln(x2−a2)dx=xln(x2−a2)+alnx+ax−a−2x | (50) |
∫ln(ax2+bx+c)dx=1a√4ac−b2tan−12ax+b√4ac−b2−2x+(b2a+x)ln(ax2+bx+c) | (51) |
(52) |
(53) |
(54) |
(55) |
(56) |
(57) |
(58) |
(59) |
(60) |
(61) |
(62) |
(63) |
(64) |
(65) |
(66) |
(67) |
(68) |
(69) |
(70) |
(71) |
(72) |
(73) |
(74) |
(75) |
(76) |
(77) |
(78) |
(79) |
(80) |
(81) |
(82) |
(83) |
(84) |
(85) |
(86) |
(87) |
(88) |
(89) |
(90) |
(91) |
(92) |
(93) |
(94) |
(95) |
(96) |
(97) |
(98) |
(99) |
(100) |
(101) |
(102) |
(103) |
(104) |
(105) |
(106) |
(107) |
(108) |
(109) |
(110) |
(111) |
(112) |
(113) |
(114) |
(115) |
(116) |
(117) |
(118) |
(119) |
(120) |
(121) |
(122) |
(123) |
(124) |
(125) |
(126) |
(127) |
(128) |
(129) |
(130) |
(131) |
(132) |
(133) |
(134) |