info prev up next book cdrom email home

Alternate Algebra

Let $A$ denote an $\Bbb{R}$-Algebra, so that $A$ is a Vector Space over $R$ and

\begin{displaymath}
A\times A\to A
\end{displaymath} (1)


\begin{displaymath}
(x,y)\mapsto x\cdot y.
\end{displaymath} (2)

Then $A$ is said to be alternate if, for all $x,y\in A,$
\begin{displaymath}
(x\cdot y)\cdot y=x\cdot(y\cdot y)
\end{displaymath} (3)


\begin{displaymath}
(x\cdot x)\cdot y=x\cdot(x\cdot y).
\end{displaymath} (4)

Here, Vector Multiplication $x\cdot y$ is assumed to be Bilinear.


References

Finch, S. ``Zero Structures in Real Algebras.'' http://www.mathsoft.com/asolve/zerodiv/zerodiv.html.

Schafer, R. D. An Introduction to Non-Associative Algebras. New York: Dover, 1995.




© 1996-9 Eric W. Weisstein
1999-05-25