info prev up next book cdrom email home

Amicable Quadruple

An amicable quadruple as a Quadruple $(a, b, c, d)$ such that

\begin{displaymath}
\sigma(a)=\sigma(b)=\sigma(c)=\sigma(d)=a+b+c+d,
\end{displaymath}

where $\sigma(n)$ is the Divisor Function.


References

Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, p. 59, 1994.




© 1996-9 Eric W. Weisstein
1999-05-25