info prev up next book cdrom email home

Amicable Triple

Dickson (1913, 1952) defined an amicable triple to be a Triple of three numbers $(l,m,n)$ such that

$\displaystyle s(l)$ $\textstyle =$ $\displaystyle m+n$  
$\displaystyle s(m)$ $\textstyle =$ $\displaystyle l+n$  
$\displaystyle s(n)$ $\textstyle =$ $\displaystyle l+m,$  

where $s(n)$ is the Restricted Divisor Function (Madachy 1979). Dickson (1913, 1952) found eight sets of amicable triples with two equal numbers, and two sets with distinct numbers. The latter are (123228768, 103340640, 124015008), for which
$\displaystyle s(123228786)$ $\textstyle =$ $\displaystyle 103340640+124015008=227355648$  
$\displaystyle s(103340640)$ $\textstyle =$ $\displaystyle 123228768+124015008=247243776$  
$\displaystyle s(124015008)$ $\textstyle =$ $\displaystyle 123228768+103340640=226569408,$  

and (1945330728960, 2324196638720, 2615631953920), for which
$\displaystyle s(1945330728960)$ $\textstyle =$ $\displaystyle 2324196638720+2615631953920$  
  $\textstyle =$ $\displaystyle 4939828592640$  
$\displaystyle s(2324196638720)$ $\textstyle =$ $\displaystyle 1945330728960+2615631953920$  
  $\textstyle =$ $\displaystyle 4560962682880$  
$\displaystyle s(2615631953920)$ $\textstyle =$ $\displaystyle 1945330728960+2324196638720$  
  $\textstyle =$ $\displaystyle 4269527367680.$  


A second definition (Guy 1994) defines an amicable triple as a Triple $(a, b, c)$ such that

\begin{displaymath}
\sigma(a)=\sigma(b)=\sigma(c)=a+b+c,
\end{displaymath}

where $\sigma(n)$ is the Divisor Function. An example is ( $2^2 3^2 5\cdot 11$, $2^5 3^2 7$, $2^2 3^2 71$).

See also Amicable Pair, Amicable Quadruple


References

Dickson, L. E. ``Amicable Number Triples.'' Amer. Math. Monthly 20, 84-92, 1913.

Dickson, L. E. History of the Theory of Numbers, Vol. 1: Divisibility and Primality. New York: Chelsea, p. 50, 1952.

Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, p. 59, 1994.

Madachy, J. S. Madachy's Mathematical Recreations. New York: Dover, p. 156, 1979.

Mason, T. E. ``On Amicable Numbers and Their Generalizations.'' Amer. Math. Monthly 28, 195-200, 1921.

mathematica.gif Weisstein, E. W. ``Sociable and Amicable Numbers.'' Mathematica notebook Sociable.m.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-25