info prev up next book cdrom email home

Arithmetic-Harmonic Mean

Let

$\displaystyle a_{n+1}$ $\textstyle =$ $\displaystyle {\textstyle{1\over 2}}(a_n+b_n)$ (1)
$\displaystyle b_{n+1}$ $\textstyle =$ $\displaystyle {2a_nb_n\over a_n+b_n}.$ (2)

Then
\begin{displaymath}
A(a_0, b_0)=\lim_{n\to\infty} a_n=\lim_{n\to\infty} b_n =\sqrt{a_0b_0},
\end{displaymath} (3)

which is just the Geometric Mean.




© 1996-9 Eric W. Weisstein
1999-05-25