info prev up next book cdrom email home

Beauzamy and Dégot's Identity

For $P$, $Q$, $R$, and $S$ Polynomials in $n$ variables

\begin{displaymath}[P\cdot Q, R\cdot S]= \sum_{i_1,\ldots,i_n\geq 0} {A \over i_1!\cdots i_n!},
\end{displaymath}

where


\begin{displaymath}
A\equiv[R^{(i_1,\ldots,i_n)}(D_1,\ldots,D_n)Q(x_1,\ldots,x_n)P^{(i_1,\ldots,i_n)}(D_1,\ldots,D_n)S(x_1,\ldots,x_n)]
\end{displaymath}

$D_i=\partial/\partial x_i$ is the Differential Operator, $[X, Y]$ is the Bombieri Inner Product, and

\begin{displaymath}
P^{(i_1,\ldots,i_n)}=D_1^{i_1}\cdots D_n^{i_n} P.
\end{displaymath}

See also Reznik's Identity




© 1996-9 Eric W. Weisstein
1999-05-26