info prev up next book cdrom email home

Reznik's Identity

For $P$ and $Q$ Polynomials in $n$ variables,


\begin{displaymath}
{\vert P\cdot Q\vert _2}^2 = \sum_{i_1,\ldots,i_n\geq 0}{{\v...
...\ldots,D_n)Q(x_1,\ldots,x_n)\vert _2}^2\over i_1!\cdots i_n!},
\end{displaymath} (1)

where $D_i\equiv\partial/\partial x_i$, $\vert X\vert _2$ is the Bombieri Norm, and

\begin{displaymath}
P^{(i_1,\ldots,i_n)}=D_1^{i_1}\cdots D_n^{i_n} P.
\end{displaymath}

Bombieri's Inequality follows from this identity.

See also Beauzamy and Dégot's Identity




© 1996-9 Eric W. Weisstein
1999-05-25