info prev up next book cdrom email home

Bombieri's Inequality

For Homogeneous Polynomials $P$ and $Q$ of degree $m$ and $n$, then

\begin{displaymath}[P\cdot Q]_2 \geq \sqrt{m!n!\over (m+n)!}\, [P]_2[Q]_2,
\end{displaymath}

where $[P\cdot Q]_2$ is the Bombieri Norm. If $m=n$, this becomes

\begin{displaymath}[P\cdot Q]_2 \geq [P]_2[Q]_2.
\end{displaymath}

See also Beauzamy and Dégot's Identity, Reznik's Identity




© 1996-9 Eric W. Weisstein
1999-05-26