info prev up next book cdrom email home

Bernoulli Distribution

A Distribution given by

$\displaystyle P(n)$ $\textstyle =$ $\displaystyle \left\{\begin{array}{ll} q\equiv 1-p & \mbox{for $n = 0$}\\  p & \mbox{for $n = 1$}\end{array}\right.$ (1)
  $\textstyle =$ $\displaystyle p^n(1-p)^{1-n}\qquad \hbox{for }n = 0, 1.$ (2)

The distribution of heads and tails in Coin Tossing is a Bernoulli distribution with $p=q=1/2$. The Generating Function of the Bernoulli distribution is
\begin{displaymath}
M(t)=\left\langle{e^{tn}}\right\rangle{}=\sum_{n=0}^1 e^{tn} p^n(1-p)^{1-n} = e^0(1-p)+e^t p,
\end{displaymath} (3)

so
$\displaystyle M(t)$ $\textstyle =$ $\displaystyle (1-p)+pe^t$ (4)
$\displaystyle M'(t)$ $\textstyle =$ $\displaystyle pe^t$ (5)
$\displaystyle M''(t)$ $\textstyle =$ $\displaystyle pe^t$ (6)
$\displaystyle M^{(n)}(t)$ $\textstyle =$ $\displaystyle pe^t,$ (7)

and the Moments about 0 are
$\displaystyle \mu_1'$ $\textstyle =$ $\displaystyle \mu = M'(0)=p$ (8)
$\displaystyle \mu_2'$ $\textstyle =$ $\displaystyle M''(0) = p$ (9)
$\displaystyle \mu_n'$ $\textstyle =$ $\displaystyle M^{(n)}(0) = p.$ (10)

The Moments about the Mean are
$\displaystyle \mu_2$ $\textstyle =$ $\displaystyle \mu_2'-(\mu_1')^2 = p-p^2=p(1-p)$ (11)
$\displaystyle \mu_3$ $\textstyle =$ $\displaystyle \mu_3'-3\mu_2'\mu_1'+2(\mu_1')^3=p-3p^2+2p^3$  
  $\textstyle =$ $\displaystyle p(1-p)(1-2p)$ (12)
$\displaystyle \mu_4$ $\textstyle =$ $\displaystyle \mu_4'-4\mu_3'\mu_1'+6\mu_2'(\mu_1')^2-3(\mu_1')^4$  
  $\textstyle =$ $\displaystyle p-4p^2+6p^3-3p^4$  
  $\textstyle =$ $\displaystyle p(1-p)(3p^2-3p+1).$ (13)

The Mean, Variance, Skewness, and Kurtosis are then
$\displaystyle \mu$ $\textstyle =$ $\displaystyle \mu_1' = p$ (14)
$\displaystyle \sigma^2$ $\textstyle =$ $\displaystyle \mu_2 = p(1-p)$ (15)
$\displaystyle \gamma_1$ $\textstyle =$ $\displaystyle {\mu_3\over \sigma^3} = {p(1-p)(1-2p)\over [p(1-p)]^{3/2}}$  
  $\textstyle =$ $\displaystyle {1-2p\over\sqrt{p(1-p)}}$ (16)
$\displaystyle \gamma_2$ $\textstyle =$ $\displaystyle {\mu_4\over \sigma^4}-3 = {p(1-2p)(2p^2-2p+1)\over p^2(1-p)^2}-3$  
  $\textstyle =$ $\displaystyle {6p^2-6p+1\over p(1-p)}.$ (17)

To find an estimator for a population mean,
$\displaystyle \left\langle{p}\right\rangle{}$ $\textstyle =$ $\displaystyle \sum_{Np=0}^N p{N\choose Np}\theta^{Np}(1-\theta)^{Nq}$  
  $\textstyle =$ $\displaystyle \theta \sum_{Np=1}^N {N-1\choose Np-1}\theta^{Np-1}(1-\theta)^{Nq}$  
  $\textstyle =$ $\displaystyle \theta[\theta+(1-\theta)]^{N-1} = \theta,$ (18)

so $\left\langle{p}\right\rangle{}$ is an Unbiased Estimator for $\theta$. The probability of $Np$ successes in $N$ trials is then
\begin{displaymath}
{N\choose Np}\theta^{Np}(1-\theta)^{Nq},
\end{displaymath} (19)

where
\begin{displaymath}
p={\hbox{[number of successes]}\over N} \equiv {n\over N}.
\end{displaymath} (20)

See also Binomial Distribution



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-26