info prev up next book cdrom email home

Bernoulli's Paradox

Suppose the Harmonic Series converges to $h$:

\begin{displaymath}
\sum_{k=1}^\infty {1\over k}=h.
\end{displaymath}

Then rearranging the terms in the sum gives

\begin{displaymath}
h-1=h,
\end{displaymath}

which is a contradiction.


References

Boas, R. P. ``Some Remarkable Sequences of Integers.'' Ch. 3 in Mathematical Plums (Ed. R. Honsberger). Washington, DC: Math. Assoc. Amer., pp. 39-40, 1979.




© 1996-9 Eric W. Weisstein
1999-05-26