info prev up next book cdrom email home

Bertrand's Test

A Convergence Test also called de Morgan's and Bertrand's Test. If the ratio of terms of a Series $\{a_n\}_{n=1}^\infty$ can be written in the form

\begin{displaymath}
{a_n\over a_{n+1}}=1+{1\over n}+{\rho_n\over n\ln n},
\end{displaymath}

then the series converges if $\underline{\lim_{n\to\infty}} \rho_n>1$ and diverges if $\overline{\lim_{n\to\infty}} \rho_n<1$, where $\underline{\lim_{n\to\infty}}$ is the Lower Limit and $\overline{\lim_{n\to\infty}}$ is the Upper Limit.

See also Kummer's Test


References

Bromwich, T. J. I'a and MacRobert, T. M. An Introduction to the Theory of Infinite Series, 3rd ed. New York: Chelsea, p. 40, 1991.




© 1996-9 Eric W. Weisstein
1999-05-26