info prev up next book cdrom email home

Cayley's Hypergeometric Function Theorem

If

\begin{displaymath}
(1-z)^{a+b-c}\,{}_2F_1(2a,2b;2c;z)=\sum_{n=0}^\infty a_nz^n,
\end{displaymath}

then


\begin{displaymath}
{}_2F_1(a,b;c+{\textstyle{1\over 2}};z)\,{}_2F_1(c-a,c-b;c{\...
...m_{n=0}^\infty {(c)_n\over (c+{\textstyle{1\over 2}})} a_nz^n,
\end{displaymath}

where ${}_2F_1(a,b;c;z)$ is a Hypergeometric Function.

See also Hypergeometric Function




© 1996-9 Eric W. Weisstein
1999-05-26