info prev up next book cdrom email home

Clausen Formula

Clausen's ${}_4F_3$ identity

\begin{displaymath}
{}_4F_3\left({\matrix{a, b, c, d\cr e, f, g\cr}; 1}\right)={...
...}\over(2a+2b)_{\vert d\vert}a_{\vert d\vert}b_{\vert d\vert}},
\end{displaymath}

holds for $a+b+c-d=1/2$, $e=a+b+1/2$, $a+f=d+1=b+g$, $d$ a nonpositive integer, and $(a)_n$ is the Pochhammer Symbol (Petkovsek et al. 1996).


Another identity ascribed to Clausen which involves the Hypergeometric Function ${}_2F_1(a,b;c;z)$ and the Generalized Hypergeometric Function ${}_3F_2(a,b,c;d,e;z)$ is given by


\begin{displaymath}
\left[{{}_2F_1\left({\matrix{a, b\cr a+b+{\textstyle{1\over ...
..., a+b, 2b\cr a+b+{\textstyle{1\over 2}}, 2a+2b\cr}; x}\right).
\end{displaymath}

See also Generalized Hypergeometric Function, Hypergeometric Function


References

Petkovsek, M.; Wilf, H. S.; and Zeilberger, D. A=B. Wellesley, MA: A. K. Peters, pp. 43 and 127, 1996.




© 1996-9 Eric W. Weisstein
1999-05-26