info prev up next book cdrom email home

Compatible

Let $\vert\vert{\hbox{\sf A}}\vert\vert$ be the Matrix Norm associated with the Matrix ${\hbox{\sf A}}$ and $\vert\vert{\bf x}\vert\vert$ be the Vector Norm associated with a Vector ${\bf x}$. Let the product ${\hbox{\sf A}}{\bf x}$ be defined, then $\vert\vert{\hbox{\sf A}}\vert\vert$ and $\vert\vert{\bf x}\vert\vert$ are said to be compatible if

\begin{displaymath}
\vert\vert{\hbox{\sf A}}{\bf x}\vert\vert\leq \vert\vert{\hbox{\sf A}}\vert\vert\,\vert\vert{\bf x}\vert\vert.
\end{displaymath}


References

Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 5th ed. San Diego, CA: Academic Press, p. 1115, 1980.




© 1996-9 Eric W. Weisstein
1999-05-26