info prev up next book cdrom email home

Conchoid of de Sluze

\begin{figure}\begin{center}\BoxedEPSF{deSluzeConchoid.epsf scaled 700}\end{center}\end{figure}

A curve first constructed by René de Sluze in 1662. In Cartesian Coordinates,

\begin{displaymath}
a(x-a)(x^2+y^2)=k^2x^2,
\end{displaymath}

and in Polar Coordinates,

\begin{displaymath}
r={k^2\cos\theta\over a}+a\sec\theta.
\end{displaymath}

The above curve has $k^2/a=1$, $a=-0.5$.




© 1996-9 Eric W. Weisstein
1999-05-26