info prev up next book cdrom email home

Confluent Hypergeometric Limit Function


\begin{displaymath}
{}_0F_1(;a;z)\equiv \lim_{q\to \infty} {}_1F_1\left({q;a;{z\over q}}\right).
\end{displaymath} (1)

It has a series expansion
\begin{displaymath}
{}_0F_1(;a;z) = \sum_{n=0}^\infty {z^n\over(a)_nn!}
\end{displaymath} (2)

and satisfies
\begin{displaymath}
z{d^2y\over dz^2}+a{dy\over dz}-y=0.
\end{displaymath} (3)

A Bessel Function of the First Kind can be expressed in terms of this function by
\begin{displaymath}
J_n(x)={({\textstyle{1\over 2}}x)^n\over n!} {}_0F_1(;n+1;-{\textstyle{1\over 4}}x^2)
\end{displaymath} (4)

(Petkovsek et al. 1996).

See also Confluent Hypergeometric Function, Generalized Hypergeometric Function, Hypergeometric Function


References

Petkovsek, M.; Wilf, H. S.; and Zeilberger, D. A=B. Wellesley, MA: A. K. Peters, p. 38, 1996.




© 1996-9 Eric W. Weisstein
1999-05-26