info prev up next book cdrom email home

Congruent Numbers

A set of numbers $(a, x, y, t)$ such that

\begin{displaymath}
\cases{
x^2+ay^2=z^2\cr
x^2-ay^2=t^2.\cr}
\end{displaymath}

They are a generalization of the Congruum Problem, which is the case $y=1$. For $a=101$, the smallest solution is
$\displaystyle x$ $\textstyle =$ $\displaystyle 2015242462949760001961$  
$\displaystyle y$ $\textstyle =$ $\displaystyle 118171431852779451900$  
$\displaystyle z$ $\textstyle =$ $\displaystyle 2339148435306225006961$  
$\displaystyle t$ $\textstyle =$ $\displaystyle 1628124370727269996961.$  

See also Congruum


References

Guy, R. K. ``Congruent Number.'' §D76 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 195-197, 1994.




© 1996-9 Eric W. Weisstein
1999-05-26