info prev up next book cdrom email home

de Moivre-Laplace Theorem

The sum of those terms of the Binomial Series of $(p+q)^s$ for which the number of successes $x$ falls between $d_1$ and $d_2$ is approximately

\begin{displaymath}
Q\approx {1\over\sqrt{2\pi}} \int_{t_1}^{t_2} e^{-t^2/2}\,dt,
\end{displaymath} (1)

where
$\displaystyle t_1$ $\textstyle \equiv$ $\displaystyle {d_1-{\textstyle{1\over 2}}-sp\over\sigma}$ (2)
$\displaystyle t_2$ $\textstyle \equiv$ $\displaystyle {d_2+{\textstyle{1\over 2}}s-sp\over\sigma}$ (3)
$\displaystyle \sigma$ $\textstyle \equiv$ $\displaystyle \sqrt{spq}.$ (4)

Uspensky (1937) has shown that


\begin{displaymath}
Q={1\over\sqrt{2\pi}}\int_{t_1}^{t_2}e^{-t^2/2}\,dt+{q-p\ove...
...t[{(1-t^2){1\over 2\pi} e^{-t^2/2}}\right]^{t_2}_{t_1}+\Omega,
\end{displaymath} (5)

where
\begin{displaymath}
\vert\Omega\vert < {0.12+0.18\vert p-q\vert\over \sigma^2}+e^{-3\sigma/2}
\end{displaymath} (6)

for $\sigma\geq 5$.


A Corollary states that the probability that $x$ successes in $s$ trials will differ from the expected value $sp$ by more than $d$ is

\begin{displaymath}
P_\delta \approx 1-2\int_0^\delta \phi(t)\,dt,
\end{displaymath} (7)

where
\begin{displaymath}
\delta\equiv {d+{\textstyle{1\over 2}}\over\sigma}.
\end{displaymath} (8)

Uspensky (1937) showed that
$\displaystyle Q_{\delta_1}$ $\textstyle \equiv$ $\displaystyle P(\vert x-sp\vert\leq d)$  
  $\textstyle =$ $\displaystyle 2\int_0^{\delta_1} \phi(t)\,dt+{1-\theta_1-\theta_2\over\sigma}\phi(\delta_1)+\Omega_1,$ (9)

where
$\displaystyle \delta_1$ $\textstyle \equiv$ $\displaystyle {d\over\delta}$ (10)
$\displaystyle \theta_1$ $\textstyle \equiv$ $\displaystyle (sq+d)-\lfloor sq+d\rfloor$ (11)
$\displaystyle \theta_2$ $\textstyle \equiv$ $\displaystyle (sp+d)-\lfloor sp+d\rfloor$ (12)

and
\begin{displaymath}
\vert\Omega_1\vert < {0.20+0.25\vert p-q\vert\over\sigma^2} +e^{-3\sigma/2},
\end{displaymath} (13)

for $\sigma\geq 5$.


References

Uspensky, J. V. Introduction to Mathematical Probability. New York: McGraw-Hill, 1937.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-24