info prev up next book cdrom email home

Dervish

\begin{figure}\begin{center}\BoxedEPSF{Dervish.epsf}\end{center}\end{figure}

A Quintic Surface having the maximum possible number of Ordinary Double Points (31), which was constructed by W. Barth in 1994 (Endraß). The implicit equation of the surface is

$64(x-w)[x^4-4x^3w-10x^2y^2-4x^2w^2$
$+ 16xw^3-20xy^2w+5y^4+16w^4-20y^2w^2]$
$ -5\sqrt{5-\sqrt{5}}\,(2z-\sqrt{5-\sqrt{5}}\,w)[4(x^2+y^2+z^2)+(1+3\sqrt{5}\,)w^2]^2,\quad$ (1)
where $w$ is a parameter (Endraß). The surface can also be described by the equation

\begin{displaymath}
aF+q=0,
\end{displaymath} (2)

where
\begin{displaymath}
F=h_1 h_2 h_3 h_4 h_5,
\end{displaymath} (3)


$\displaystyle h_1$ $\textstyle =$ $\displaystyle x-z$ (4)
$\displaystyle h_2$ $\textstyle =$ $\displaystyle \cos\left({2\pi\over 5}\right)x-\sin\left({2\pi\over 5}\right)y-z$ (5)
$\displaystyle h_3$ $\textstyle =$ $\displaystyle \cos\left({4\pi\over 5}\right)x-\sin\left({4\pi\over 5}\right)y-z$ (6)
$\displaystyle h_4$ $\textstyle =$ $\displaystyle \cos\left({6\pi\over 5}\right)x-\sin\left({6\pi\over 5}\right)y-z$ (7)
$\displaystyle h_5$ $\textstyle =$ $\displaystyle \cos\left({8\pi\over 5}\right)x-\sin\left({8\pi\over 5}\right)y-z$ (8)


\begin{displaymath}
q=(1-cz)(x^2+y^2-1+rz^2)^2,
\end{displaymath} (9)

and
$\displaystyle r$ $\textstyle =$ $\displaystyle {\textstyle{1\over 4}}(1+\sqrt{5}\,)$ (10)
$\displaystyle a$ $\textstyle =$ $\displaystyle -{8\over 5}\left({1+{1\over\sqrt{5}}}\right)\sqrt{5-\sqrt{5}}$ (11)
$\displaystyle c$ $\textstyle =$ $\displaystyle {\textstyle{1\over 2}}\sqrt{5-\sqrt{5}}\,$ (12)

(Nordstrand).


The dervish is invariant under the Group $D_5$ and contains exactly 15 lines. Five of these are the intersection of the surface with a $D_5$-invariant cone containing 16 nodes, five are the intersection of the surface with a $D_5$-invariant plane containing 10 nodes, and the last five are the intersection of the surface with a second $D_5$-invariant plane containing no nodes (Endraß).


References

Endraß, S. ``Togliatti Surfaces.'' http://www.mathematik.uni-mainz.de/AlgebraischeGeometrie/docs/Etogliatti.shtml.

Endraß, S. ``Flächen mit vielen Doppelpunkten.'' DMV-Mitteilungen 4, 17-20, 4/1995.

Endraß, S. Symmetrische Fläche mit vielen gewöhnlichen Doppelpunkten. Ph.D. thesis. Erlangen, Germany, 1996.

Nordstrand, T. ``Dervish.'' http://www.uib.no/people/nfytn/dervtxt.htm.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-24