info prev up next book cdrom email home

Diophantine Equation--5th Powers

The 2-1 fifth-order Diophantine equation

\begin{displaymath}
A^5+B^5=C^5
\end{displaymath} (1)

is a special case of Fermat's Last Theorem with $n=5$, and so has no solution. No solutions to the 2-2 equation
\begin{displaymath}
A^5+B^5=C^5+D^5
\end{displaymath} (2)

are known, despite the fact that sums up to $1.02\times 10^{26}$ have been checked (Guy 1994, p. 140), improving on the results on Lander et al. (1967), who checked up to $2.8\times 10^{14}$. (In fact, no solutions are known for Powers of 6 or 7 either.)


No solutions to the 3-1 equation

\begin{displaymath}
A^5+B^5+C^5=D^5
\end{displaymath} (3)

are known (Lander et al. 1967), nor are any 3-2 solutions up to $8\times 10^{12}$ (Lander et al. 1967).


Parametric solutions are known for the 3-3 (Guy 1994, pp. 140 and 142). Swinnerton-Dyer (1952) gave two parametric solutions to the 3-3 equation but, forty years later, W. Gosper discovered that the second scheme has an unfixable bug. The smallest primitive 3-3 solutions are

$\displaystyle 24^5+28^5+ 67^5$ $\textstyle =$ $\displaystyle 3^5+54^5+ 62^5$ (4)
$\displaystyle 18^5+44^5+ 66^5$ $\textstyle =$ $\displaystyle 13^5+51^5+ 64^5$ (5)
$\displaystyle 21^5+43^5+ 74^5$ $\textstyle =$ $\displaystyle 8^5+62^5+ 68^5$ (6)
$\displaystyle 56^5+67^5+ 83^5$ $\textstyle =$ $\displaystyle 53^5+72^5+ 81^5$ (7)
$\displaystyle 49^5+75^5+107^5$ $\textstyle =$ $\displaystyle 39^5+92^5+100^5$ (8)

(Moessner 1939, Moessner 1948, Lander et al. 1967).


For 4 fifth Powers, we have the 4-1 equation

\begin{displaymath}
27^5+84^5+110^5+133^5=144^5
\end{displaymath} (9)

(Lander and Parkin 1967, Lander et al. 1967), but it is not known if there is a parametric solution (Guy 1994, p. 140). Sastry's (1934) 5-1 solution gives some 4-2 solutions. The smallest primitive 4-2 solutions are
$\displaystyle 4^5+10^5+20^5+ 28^5$ $\textstyle =$ $\displaystyle 3^5+ 29^5$ (10)
$\displaystyle 5^5+13^5+25^5+ 37^5$ $\textstyle =$ $\displaystyle 12^5+ 38^5$ (11)
$\displaystyle 26^5+29^5+35^5+ 50^5$ $\textstyle =$ $\displaystyle 28^5+ 52^5$ (12)
$\displaystyle 5^5+25^5+62^5+ 63^5$ $\textstyle =$ $\displaystyle 61^5+ 64^5$ (13)
$\displaystyle 6^5+50^5+53^5+ 82^5$ $\textstyle =$ $\displaystyle 16^5+ 85^5$ (14)
$\displaystyle 56^5+63^5+72^5+ 86^5$ $\textstyle =$ $\displaystyle 31^5+ 96^5$ (15)
$\displaystyle 44^5+58^5+67^5+ 94^5$ $\textstyle =$ $\displaystyle 14^5+ 99^5$ (16)
$\displaystyle 11^5+13^5+37^5+ 99^5$ $\textstyle =$ $\displaystyle 63^5+ 97^5$ (17)
$\displaystyle 48^5+57^5+76^5+100^5$ $\textstyle =$ $\displaystyle 25^5+106^5$ (18)
$\displaystyle 58^5+76^5+79^5+102^5$ $\textstyle =$ $\displaystyle 54^5+111^5$ (19)

(Rao 1934, Moessner 1948, Lander et al. 1967).


A two-parameter solution to the 4-3 equation was given by Xeroudakes and Moessner (1958). Gloden (1949) also gave a parametric solution. The smallest solution is

\begin{displaymath}
1^5+8^5+14^5+27^5=3^5+22^5+25^5
\end{displaymath} (20)

(Rao 1934, Lander et al. 1967). Several parametric solutions to the 4-4 equation were found by Xeroudakes and Moessner (1958). The smallest 4-4 solution is
\begin{displaymath}
5^5+6^5+6^5+8^5=4^5+7^5+7^5+7^5
\end{displaymath} (21)

(Rao 1934, Lander et al. 1967). The first 4-4-4 equation is


\begin{displaymath}
3^5+48^5+52^5+61^5=13^5+36^5+51^5+64^5=18^5+36^5+44^5+66^5
\end{displaymath} (22)

(Lander et al. 1967).


Sastry (1934) found a 2-parameter solution for 5-1 equations
$(75v^5-u^5)^5+(u^5+25v^5)^5+(u^5-25v^5)^5$
$ +(10u^3v^2)^5+(50uv^4)^5=(u^5+75v^5)^5\quad$ (23)
(quoted in Lander and Parkin 1967), and Lander and Parkin (1967) found the smallest numerical solutions. Lander et al. (1967) give a list of the smallest solutions, the first few being

$\displaystyle 19^5+ 43^5+ 46^5+ 47^5+ 67^5$ $\textstyle =$ $\displaystyle 72^5$ (24)
$\displaystyle 21^5+ 23^5+ 37^5+ 79^5+ 84^5$ $\textstyle =$ $\displaystyle 94^5$ (25)
$\displaystyle 7^5+ 43^5+ 57^5+ 80^5+100^5$ $\textstyle =$ $\displaystyle 107^5$ (26)
$\displaystyle 78^5+120^5+191^5+259^5+347^5$ $\textstyle =$ $\displaystyle 365^5$ (27)
$\displaystyle 79^5+202^5+258^5+261^5+395^5$ $\textstyle =$ $\displaystyle 415^5$ (28)
$\displaystyle 4^5+ 26^5+139^5+296^5+412^5$ $\textstyle =$ $\displaystyle 427^5$ (29)
$\displaystyle 31^5+105^5+139^5+314^5+416^5$ $\textstyle =$ $\displaystyle 435^5$ (30)
$\displaystyle 54^5+ 91^5+101^5+404^5+430^5$ $\textstyle =$ $\displaystyle 480^5$ (31)
$\displaystyle 19^5+201^5+347^5+388^5+448^5$ $\textstyle =$ $\displaystyle 503^5$ (32)
$\displaystyle 159^5+172^5+200^5+356^5+513^5$ $\textstyle =$ $\displaystyle 530^5$ (33)
$\displaystyle 218^5+276^5+385^5+409^5+495^5$ $\textstyle =$ $\displaystyle 553^5$ (34)
$\displaystyle 2^5+298^5+351^5+474^5+500^5$ $\textstyle =$ $\displaystyle 575^5$ (35)

(Lander and Parkin 1967, Lander et al. 1967).


The smallest primitive 5-2 solutions are

$\displaystyle 4^5+ 5^5+ 7^5+16^5+21^5$ $\textstyle =$ $\displaystyle 1^5+22^5$ (36)
$\displaystyle 9^5+11^5+14^5+18^5+30^5$ $\textstyle =$ $\displaystyle 23^5+29^5$ (37)
$\displaystyle 10^5+14^5+26^5+31^5+33^5$ $\textstyle =$ $\displaystyle 16^5+38^5$ (38)
$\displaystyle 4^5+22^5+29^5+35^5+36^5$ $\textstyle =$ $\displaystyle 24^5+42^5$ (39)
$\displaystyle 8^5+15^5+17^5+19^5+45^5$ $\textstyle =$ $\displaystyle 30^5+44^5$ (40)
$\displaystyle 5^5+ 6^5+26^5+27^5+44^5$ $\textstyle =$ $\displaystyle 36^5+42^5$ (41)

(Rao 1934, Lander et al. 1967).


The 6-1 equation has solutions

$\displaystyle 4^5+ 5^5+ 6^5+ 7^5+ 9^5+11^5$ $\textstyle =$ $\displaystyle 12^5$ (42)
$\displaystyle 5^5+10^5+11^5+16^5+19^5+29^5$ $\textstyle =$ $\displaystyle 30^5$ (43)
$\displaystyle 15^5+16^5+17^5+22^5+24^5+28^5$ $\textstyle =$ $\displaystyle 32^5$ (44)
$\displaystyle 13^5+18^5+23^5+31^5+36^5+66^5$ $\textstyle =$ $\displaystyle 67^5$ (45)
$\displaystyle 7^5+20^5+29^5+31^5+34^5+66^5$ $\textstyle =$ $\displaystyle 67^5$ (46)
$\displaystyle 22^5+35^5+48^5+58^5+61^5+64^5$ $\textstyle =$ $\displaystyle 78^5$ (47)
$\displaystyle 4^5+13^5+19^5+20^5+67^5+96^5$ $\textstyle =$ $\displaystyle 99^5$ (48)
$\displaystyle 6^5+17^5+60^5+64^5+73^5+89^5$ $\textstyle =$ $\displaystyle 99^5$ (49)

(Martin 1887, 1888, Lander and Parkin 1967, Lander et al. 1967).


The smallest 7-1 solution is

\begin{displaymath}
1^5+7^5+8^5+14^5+15^5+18^5+20^5=23^5
\end{displaymath} (50)

(Lander et al. 1967).


References

Berndt, B. C. Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, p. 95, 1994.

Gloden, A. ``Über mehrgeradige Gleichungen.'' Arch. Math. 1, 482-483, 1949.

Guy, R. K. ``Sums of Like Powers. Euler's Conjecture.'' §D1 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 139-144, 1994.

Lander, L. J. and Parkin, T. R. ``A Counterexample to Euler's Sum of Powers Conjecture.'' Math. Comput. 21, 101-103, 1967.

Lander, L. J.; Parkin, T. R.; and Selfridge, J. L. ``A Survey of Equal Sums of Like Powers.'' Math. Comput. 21, 446-459, 1967.

Martin, A. ``Methods of Finding $n$th-Power Numbers Whose Sum is an $n$th Power; With Examples.'' Bull. Philos. Soc. Washington 10, 107-110, 1887.

Martin, A. Smithsonian Misc. Coll. 33, 1888.

Martin, A. ``About Fifth-Power Numbers whose Sum is a Fifth Power.'' Math. Mag. 2, 201-208, 1896.

Moessner, A. ``Einige numerische Identitäten.'' Proc. Indian Acad. Sci. Sect. A 10, 296-306, 1939.

Moessner, A. ``Alcune richerche di teoria dei numeri e problemi diofantei.'' Bol. Soc. Mat. Mexicana 2, 36-39, 1948.

Rao, K. S. ``On Sums of Fifth Powers.'' J. London Math. Soc. 9, 170-171, 1934.

Sastry, S. ``On Sums of Powers.'' J. London Math. Soc. 9, 242-246, 1934.

Swinnerton-Dyer, H. P. F. ``A Solution of $A^5+B^5+C^5=D^5+E^5+F^5$.'' Proc. Cambridge Phil. Soc. 48, 516-518, 1952.

Xeroudakes, G. and Moessner, A. ``On Equal Sums of Like Powers.'' Proc. Indian Acad. Sci. Sect. A 48, 245-255, 1958.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-24