The 2-1 equation
(1) |
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
1 | 2 | 3 | 3 | 4 | 7 | 8 | 11 | 15 | 23 |
2 | 2 | 2 | 2 | 4 | 7 | 8 | 9 | 12 | 19 |
3 | 3 | 3 | 7 | 8 | 11 | 24 | |||
4 | 4 | 7 | 10 | 23 | |||||
5 | 5 | 5 | 11 | 16 | |||||
6 | 6 | 27 | |||||||
7 | 7 |
Take the results from the Ramanujan 6-10-8 Identity that for , with
(2) |
(3) |
(4) |
(5) | |||
(6) |
(7) |
See also Ramanujan 6-10-8 Identity
References
Berndt, B. C. Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, p. 101, 1994.
Berndt, B. C. and Bhargava, S. ``Ramanujan--For Lowbrows.'' Amer. Math. Monthly 100, 644-656, 1993.
Dickson, L. E. History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Chelsea, pp. 653-657, 1966.
Gloden, A. Mehrgradige Gleichungen. Groningen, Netherlands: P. Noordhoff, 1944.
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, 1994.
Lander, L. J.; Parkin, T. R.; and Selfridge, J. L. ``A Survey of Equal Sums of Like Powers.'' Math. Comput.
21, 446-459, 1967.
Reznick, B. ``Sums of Even Powers of Real Linear Forms.'' Mem. Amer. Math. Soc. No. 463, 96. Providence,
RI: Amer. Math. Soc., 1992.
© 1996-9 Eric W. Weisstein