info prev up next book cdrom email home

Diophantine Equation nth Powers

The 2-1 equation

\begin{displaymath}
A^n+B^n=C^n
\end{displaymath} (1)

is a special case of Fermat's Last Theorem and so has no solutions for $n\geq 3$. Lander et al. (1967) give a table showing the smallest $n$ for which a solution to

\begin{displaymath}
{x_1}^k+{x_2}^k+\ldots+{x_m}^k={y_1}^k+{y_2}^k+\ldots+{y_n}^k,
\end{displaymath}

with $1\leq m\leq n$ is known.
  $k$
$m$ 2 3 4 5 6 7 8 9 10
1 2 3 3 4 7 8 11 15 23
2 2 2 2 4 7 8 9 12 19
3       3 3 7 8 11 24
4           4 7 10 23
5           5 5 11 16
6               6 27
7                 7

Take the results from the Ramanujan 6-10-8 Identity that for $ad=bc$, with

$F_{2m}(a,b,c,d)=(a+b+c)^{2m}+(b+c+d)^{2m}$
$ -(c+d+a)^{2m}-(d+a+b)^{2m}+(a-d)^{2m}-(b-c)^{2m}\quad$ (2)
and

$f_{2m}(x,y)=(1+x+y)^{2m}+(x+y+xy)^{2m}$
$-(y+xy+1)^{2m}-(xy+1+x)^{2m}+(1-xy)^{2m}-(x-y)^{2m},\quad$ (3)
then

\begin{displaymath}
F_{2m}(a,b,c,d)=a^{2m}f_{2m}(x,y).
\end{displaymath} (4)

Using
$\displaystyle f_2(x,y)$ $\textstyle =$ $\displaystyle 0$ (5)
$\displaystyle f_4(x,y)$ $\textstyle =$ $\displaystyle 0$ (6)

now gives


\begin{displaymath}
(a+b+c)^n+(b+c+d)^n+(a-d)^n = (c+d+a)^n+(d+a+b)^n+(b-c)^n
\end{displaymath} (7)

for $n=2$ or 4.

See also Ramanujan 6-10-8 Identity


References

Berndt, B. C. Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, p. 101, 1994.

Berndt, B. C. and Bhargava, S. ``Ramanujan--For Lowbrows.'' Amer. Math. Monthly 100, 644-656, 1993.

Dickson, L. E. History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Chelsea, pp. 653-657, 1966.

Gloden, A. Mehrgradige Gleichungen. Groningen, Netherlands: P. Noordhoff, 1944.

Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, 1994.

Lander, L. J.; Parkin, T. R.; and Selfridge, J. L. ``A Survey of Equal Sums of Like Powers.'' Math. Comput. 21, 446-459, 1967.

Reznick, B. ``Sums of Even Powers of Real Linear Forms.'' Mem. Amer. Math. Soc. No. 463, 96. Providence, RI: Amer. Math. Soc., 1992.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-24