A set of Positive Integers
satisfies the Diophantus property of order if, for all
, ..., with ,
(1) |
(2) |
(3) |
The quadruplet
(4) |
References
Aleksandriiskii, D. Arifmetika i kniga o mnogougol'nyh chislakh. Moscow: Nauka, 1974.
Brown, E. ``Sets in Which is Always a Square.'' Math. Comput. 45, 613-620, 1985.
Davenport, H. and Baker, A. ``The Equations and .'' Quart. J. Math. (Oxford) Ser. 2 20, 129-137, 1969.
Dujella, A. ``Generalization of a Problem of Diophantus.'' Acta Arithm. 65, 15-27, 1993.
Dujella, A. ``Diophantine Quadruples for Squares of Fibonacci and Lucas Numbers.'' Portugaliae Math. 52, 305-318, 1995.
Dujella, A. ``Generalized Fibonacci Numbers and the Problem of Diophantus.'' Fib. Quart. 34, 164-175, 1996.
Hoggatt, V. E. Jr. and Bergum, G. E. ``A Problem of Fermat and the Fibonacci Sequence.'' Fib. Quart. 15, 323-330, 1977.
Jones, B. W. ``A Variation of a Problem of Davenport and Diophantus.'' Quart. J. Math. (Oxford) Ser. (2) 27, 349-353, 1976.