info prev up next book cdrom email home

Discriminant (Metric)

Given a Metric $g_{\alpha\beta}$, the discriminant is defined by

\begin{displaymath}
g\equiv {\rm det}(g_{\alpha\beta}) = \left\vert\matrix{g_{11...
...}\cr g_{21} & g_{22}\cr}\right\vert = g_{11}g_{22}-(g_{12})^2.
\end{displaymath} (1)

Let $g$ be the discriminant and $\bar g$ the transformed discriminant, then
\begin{displaymath}
\bar g=D^2 g
\end{displaymath} (2)


\begin{displaymath}
g={\bar D}^2\bar g,
\end{displaymath} (3)

where
$\displaystyle D$ $\textstyle \equiv$ $\displaystyle {\partial (u^1,u^2)\over \partial ({\bar u}^1,{\bar u}^2)} =\left...
...ial {\bar u}^1} & {\partial u^2\over \partial {\bar u}^2}\end{array}\right\vert$ (4)
$\displaystyle \bar D$ $\textstyle \equiv$ $\displaystyle {\partial ({\bar u}^1,{\bar u}^2)\over \partial (u^1,u^2)} = \lef...
... \partial u^1} & {\partial {\bar u}^2\over \partial u^2}\end{array}\right\vert.$ (5)




© 1996-9 Eric W. Weisstein
1999-05-24