info prev up next book cdrom email home

Dual Basis

Given a Contravariant Basis $\{\vec e_1,\ldots,\vec e_n\}$, its dual Covariant basis is given by

\begin{displaymath}
\vec e\,^\alpha \cdot \vec e_\beta = g(\vec e\,^\alpha, \vec e_\beta)= \delta^\alpha _\beta,
\end{displaymath}

where $g$ is the Metric and $\delta^\alpha_\beta$ is the mixed Kronecker Delta. In Euclidean Space with an Orthonormal Basis,

\begin{displaymath}
\vec e\,^j = \vec e_j,
\end{displaymath}

so the Basis and its dual are the same.




© 1996-9 Eric W. Weisstein
1999-05-24