info prev up next book cdrom email home

Basis

A (vector) basis is any Set of $n$ Linearly Independent Vectors capable of generating an $n$-dimensional Subspace of $\Bbb{R}^n$. Given a Hyperplane defined by

\begin{displaymath}
x_1+x_2+x_3+x_4+x_5 = 0,
\end{displaymath}

a basis is found by solving for $x_1$ in terms of $x_2$, $x_3$, $x_4$, and $x_5$. Carrying out this procedure,

\begin{displaymath}
x_1 = -x_2-x_3-x_4-x_5,
\end{displaymath}

so

\begin{displaymath}
\left[\matrix{x_1 \cr x_2 \cr x_3 \cr x_4 \cr x_5\cr}\right]...
...t]
+ x_5 \left[\matrix{-1 \cr 0 \cr 0 \cr 0 \cr 1\cr}\right],
\end{displaymath}

and the above Vector form an (unnormalized) Basis. Given a Matrix A with an orthonormal basis, the Matrix corresponding to a new basis, expressed in terms of the original ${\bf\hat x}_1, \ldots,
{\bf\hat x}_n$ is

\begin{displaymath}
{\hbox{\sf A}}' = \left[\matrix{{\hbox{\sf A}}{\bf\hat x}_1 & \ldots & {\hbox{\sf A}}{\bf\hat x}_n}\right].
\end{displaymath}

See also Bilinear Basis, Modular System Basis, Orthonormal Basis, Topological Basis




© 1996-9 Eric W. Weisstein
1999-05-26