info prev up next book cdrom email home

Eisenstein Series


\begin{displaymath}
E_r(t)=\setbox0=\hbox{$\scriptstyle{m, n}$}\setbox2=\hbox{$\...
...fi\fi
\mathop{{\sum}'}_{\kern-\wd4 m, n} {1\over (mt+n)^{2r}},
\end{displaymath}

where the sum $\Sigma'$ excludes $m=n=0$, $\Im[t]>0$, and $r$ is an Integer $>2$. The Eisenstein series satisfies the remarkable property

\begin{displaymath}
E_r\left({at+b\over ct+d}\right)= (ct+d)^{2r}E_r(t).
\end{displaymath}

See also Ramanujan-Eisenstein Series




© 1996-9 Eric W. Weisstein
1999-05-25