info prev up next book cdrom email home

Elliptic Hyperboloid

The elliptic hyperboloid is the generalization of the Hyperboloid to three distinct semimajor axes. The elliptic hyperboloid of one sheet is a Ruled Surface and has Cartesian equation

\begin{displaymath}
{x^2\over a^2}+{y^2\over b^2}-{z^2\over c^2}=1,
\end{displaymath} (1)

and parametric equations
$\displaystyle x(u,v)$ $\textstyle =$ $\displaystyle a\sqrt{1+u^2}\cos v$ (2)
$\displaystyle y(u,v)$ $\textstyle =$ $\displaystyle b\sqrt{1+u^2}\sin v$ (3)
$\displaystyle z(u,v)$ $\textstyle =$ $\displaystyle cu$ (4)

for $v \in [0, 2\pi)$, or
$\displaystyle x(u,v)$ $\textstyle =$ $\displaystyle a(\cos u\mp v\sin u)$ (5)
$\displaystyle y(u,v)$ $\textstyle =$ $\displaystyle b(\sin u\pm v\cos u)$ (6)
$\displaystyle z(u,v)$ $\textstyle =$ $\displaystyle \pm cv,$ (7)

or
$\displaystyle x(u,v)$ $\textstyle =$ $\displaystyle a\cosh v\cos u$ (8)
$\displaystyle y(u,v)$ $\textstyle =$ $\displaystyle b\cosh v\sin u$ (9)
$\displaystyle z(u,v)$ $\textstyle =$ $\displaystyle c\sinh v.$ (10)


The two-sheeted elliptic hyperboloid oriented along the z-Axis has Cartesian equation

\begin{displaymath}
{x^2\over a^2}+{y^2\over a^2}-{z^2\over c^2}=-1,
\end{displaymath} (11)

and parametric equations
$\displaystyle x$ $\textstyle =$ $\displaystyle a\sinh u\cos v$ (12)
$\displaystyle y$ $\textstyle =$ $\displaystyle b\sinh u\sin v$ (13)
$\displaystyle z$ $\textstyle =$ $\displaystyle c\pm\cosh u.$ (14)

The two-sheeted elliptic hyperboloid oriented along the x-Axis has Cartesian equation
\begin{displaymath}
{x^2\over a^2}-{y^2\over a^2}-{z^2\over c^2}=1
\end{displaymath} (15)

and parametric equations
$\displaystyle x$ $\textstyle =$ $\displaystyle a\cosh u\cosh v$ (16)
$\displaystyle y$ $\textstyle =$ $\displaystyle b\sinh u\cosh v$ (17)
$\displaystyle z$ $\textstyle =$ $\displaystyle c\sinh v.$ (18)

See also Hyperboloid, Ruled Surface


References

Gray, A. Modern Differential Geometry of Curves and Surfaces. Boca Raton, FL: CRC Press, pp. 296-297, 1993.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-25