info prev up next book cdrom email home

Hyperboloid

A Quadratic Surface which may be one- or two-sheeted.


The one-sheeted circular hyperboloid is a doubly Ruled Surface. When oriented along the z-Axis, the one-sheeted circular hyperboloid has Cartesian Coordinates equation

\begin{displaymath}
{x^2\over a^2}+{y^2\over a^2}-{z^2\over c^2}=1,
\end{displaymath} (1)

and parametric equation
$\displaystyle x$ $\textstyle =$ $\displaystyle a\sqrt{1+u^2}\cos v$ (2)
$\displaystyle y$ $\textstyle =$ $\displaystyle a\sqrt{1+u^2}\sin v$ (3)
$\displaystyle z$ $\textstyle =$ $\displaystyle cu$ (4)

for $v\in [0,2\pi)$ (left figure). Other parameterizations include
$\displaystyle x(u,v)$ $\textstyle =$ $\displaystyle a(\cos u\mp v\sin u)$ (5)
$\displaystyle y(u,v)$ $\textstyle =$ $\displaystyle a(\sin u\pm v\cos u)$ (6)
$\displaystyle z(u,v)$ $\textstyle =$ $\displaystyle \pm cv,$ (7)

(middle figure), or
$\displaystyle x(u,v)$ $\textstyle =$ $\displaystyle a\cosh v\cos u$ (8)
$\displaystyle y(u,v)$ $\textstyle =$ $\displaystyle a\cosh v\sin u$ (9)
$\displaystyle z(u,v)$ $\textstyle =$ $\displaystyle c\sinh v$ (10)

(right figure). An obvious generalization gives the one-sheeted Elliptic Hyperboloid.


A two-sheeted circular hyperboloid oriented along the z-Axis has Cartesian Coordinates equation

\begin{displaymath}
{x^2\over a^2}+{y^2\over a^2}-{z^2\over c^2}=-1.
\end{displaymath} (11)

The parametric equations are
$\displaystyle x$ $\textstyle =$ $\displaystyle a\sinh u\cos v$ (12)
$\displaystyle y$ $\textstyle =$ $\displaystyle a\sinh u\sin v$ (13)
$\displaystyle z$ $\textstyle =$ $\displaystyle \pm c\cosh u$ (14)

for $v\in [0,2\pi)$. Note that the plus and minus signs in $z$ correspond to the upper and lower sheets. The two-sheeted circular hyperboloid oriented along the x-Axis has Cartesian equation
\begin{displaymath}
{x^2\over a^2}-{y^2\over a^2}-{z^2\over c^2}=1
\end{displaymath} (15)

and parametric equations
$\displaystyle x$ $\textstyle =$ $\displaystyle \pm a\cosh u\cosh v$ (16)
$\displaystyle y$ $\textstyle =$ $\displaystyle a\sinh u\cosh v$ (17)
$\displaystyle z$ $\textstyle =$ $\displaystyle c\sinh v$ (18)

(Gray 1993, p. 313). Again, an obvious generalization gives the two-sheeted Elliptic Hyperboloid.


The Support Function of the hyperboloid of one sheet

\begin{displaymath}
{x^2\over a^2}+{y^2\over b^2}-{z^2\over c^2}=1
\end{displaymath} (19)

is
\begin{displaymath}
h=\left({{x^2\over a^4}+{y^2\over b^4}+{z^2\over c^4}}\right)^{-1/2},
\end{displaymath} (20)

and the Gaussian Curvature is
\begin{displaymath}
K=-{h^4\over a^2b^2c^2}.
\end{displaymath} (21)

The Support Function of the hyperboloid of two sheets
\begin{displaymath}
{x^2\over a^2}-{y^2\over b^2}-{z^2\over c^2}=1
\end{displaymath} (22)

is
\begin{displaymath}
h=\left({{x^2\over a^4}-{y^2\over b^4}+{z^2\over c^4}}\right)^{-1/2},
\end{displaymath} (23)

and the Gaussian Curvature is
\begin{displaymath}
K={h^4\over a^2b^2c^2}
\end{displaymath} (24)

(Gray 1993, pp. 296-297).

See also Catenoid, Ellipsoid, Elliptic Hyperboloid, Hyperboloid Embedding, Paraboloid, Ruled Surface


References

Fischer, G. (Ed.). Plates 67 and 69 in Mathematische Modelle/Mathematical Models, Bildband/Photograph Volume. Braunschweig, Germany: Vieweg, pp. 62 and 64, 1986.

Gray, A. ``The Hyperboloid of Revolution.'' §18.5 in Modern Differential Geometry of Curves and Surfaces. Boca Raton, FL: CRC Press, pp. 296-297, 311-314, and 369-370, 1993.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-25