info prev up next book cdrom email home

Fibonacci Q-Matrix

A Fibonacci Matrix of the form

\begin{displaymath}
{\hbox{\sf M}}=\left[{\matrix{m & 1\cr 1 & 0\cr}}\right].
\end{displaymath} (1)

If $U$ and $V$ are defined as Binet Forms
$\displaystyle U_n$ $\textstyle =$ $\displaystyle mU_{n-1}+U_{n-2} \quad (U_0=0, U_1=1)$ (2)
$\displaystyle V_n$ $\textstyle =$ $\displaystyle mV_{n-1}+V_{n-2} \quad (V_0=2, V_1=m),$ (3)

then
$\displaystyle {\hbox{\sf M}}$ $\textstyle =$ $\displaystyle \left[\begin{array}{cc}U_{n+1} & U_n\\  U_n & U_{n-1}\end{array}\right]$ (4)
$\displaystyle {\hbox{\sf M}}^{-1}$ $\textstyle =$ $\displaystyle {\hbox{\sf M}}-m{\hbox{\sf I}}=\left[\begin{array}{cc}0 & 1\\  1 & -m\end{array}\right].$ (5)

Defining
\begin{displaymath}
{\hbox{\sf Q}}\equiv \left[{\matrix{F_2 & F_1\cr F_1 & F_0\cr}}\right] = \left[{\matrix{1 & 1\cr 1 & 0\cr}}\right],
\end{displaymath} (6)

then
\begin{displaymath}
{\hbox{\sf Q}}^n=\left[{\matrix{F_{n+1} & F_n\cr F_n & F_{n-1}\cr}}\right]
\end{displaymath} (7)

(Honsberger 1985, pp. 106-107).

See also Binet Forms, Fibonacci Number


References

Honsberger, R. ``A Second Look at the Fibonacci and Lucas Numbers.'' Ch. 8 in Mathematical Gems III. Washington, DC: Math. Assoc. Amer., 1985.




© 1996-9 Eric W. Weisstein
1999-05-26