The unique Group of Order 7. It is Abelian and Cyclic. Examples include the Point Group and the integers modulo 7 under addition. The elements of the group satisfy , where 1 is the Identity Element. The Cycle Graph is shown above.
1 | |||||||
1 | 1 | ||||||
1 | |||||||
1 | |||||||
1 | |||||||
1 | |||||||
1 | |||||||
1 |
The Conjugacy Classes are , , , , , , and .