info prev up next book cdrom email home

Finite Group Z7

\begin{figure}\begin{center}\BoxedEPSF{Z7.epsf}\end{center}\end{figure}

The unique Group of Order 7. It is Abelian and Cyclic. Examples include the Point Group $C_7$ and the integers modulo 7 under addition. The elements $A_i$ of the group satisfy ${A_i}^7=1$, where 1 is the Identity Element. The Cycle Graph is shown above.

$Z_7$ 1 $A$ $B$ $C$ $D$ $E$ $F$
1 1 $A$ $B$ $C$ $D$ $E$ $F$
$A$ $A$ $B$ $C$ $D$ $E$ $F$ 1
$B$ $B$ $C$ $D$ $E$ $F$ 1 $A$
$C$ $C$ $D$ $E$ $F$ 1 $A$ $B$
$D$ $D$ $E$ $F$ 1 $A$ $B$ $C$
$E$ $E$ $F$ 1 $A$ $B$ $C$ $D$
$F$ $F$ 1 $A$ $B$ $C$ $D$ $E$

The Conjugacy Classes are $\{1\}$, $\{A\}$, $\{B\}$, $\{C\}$, $\{D\}$, $\{E\}$, and $\{F\}$.




© 1996-9 Eric W. Weisstein
1999-05-26