info prev up next book cdrom email home

Fourier-Mellin Integral

The inverse of the Laplace Transform

$\displaystyle F(t)$ $\textstyle =$ $\displaystyle {\mathcal L}^{-1}[f(s)] = {1\over 2\pi i}\int^{\gamma +i\infty}_{\gamma -i\infty} e^{st}f(s)\,ds$  
$\displaystyle f(s)$ $\textstyle =$ $\displaystyle {\mathcal L}[F(t)] = \int^\infty_0 F(t)e^{-st}\,dt.$  

See also Bromwich Integral, Laplace Transform




© 1996-9 Eric W. Weisstein
1999-05-26