info prev up next book cdrom email home

Fractional Differential Equation

The solution to the differential equation

\begin{displaymath}[D^{2v}+aD^v+bD^0]y(t)=0
\end{displaymath}

is

\begin{displaymath}
y(t)=\cases{
e_\alpha(t)-e_\beta(t)\cr
\qquad {\rm for\ }\...
...u-1}\over\Gamma(2v)}\cr
\qquad {\rm for\ }\alpha=\beta=0,\cr}
\end{displaymath}

where
$\displaystyle q$ $\textstyle =$ $\displaystyle {1\over v}$  
$\displaystyle e_\beta(t)$ $\textstyle =$ $\displaystyle \sum_{k=0}^{q-1} \beta^{q-k-1} E_t(-kv,\beta^q),$  

$E_t(a,x)$ is the Et-Function, and $\Gamma(n)$ is the Gamma Function.


References

Miller, K. S. ``Derivatives of Noninteger Order.'' Math. Mag. 68, 183-192, 1995.




© 1996-9 Eric W. Weisstein
1999-05-26