info prev up next book cdrom email home

Gaussian Sum


\begin{displaymath}
S(p,q)\equiv \sum_{r=0}^{q-1} e^{-\pi ir^2p/q},
\end{displaymath} (1)

where $p$ and $q$ are Relatively Prime Integers. If $(n,n')=1$, then
\begin{displaymath}
S(m,nn')=S(mn',n)S(mn,n').
\end{displaymath} (2)

Gauß showed
\begin{displaymath}
\sum_{r=0}^{q-1} e^{2\pi i r^2/q} = {1-i^q\over 1-i} \sqrt{q}
\end{displaymath} (3)

for Odd $q$. A more general result was obtained by Schaar. For $p$ and $q$ of opposite Parity (i.e., one is Even and the other is Odd), Schaar's Identity states
\begin{displaymath}
{1\over \sqrt{q}} \sum_{r=0}^{q-1} e^{-\pi ir^2p/q} = {e^{-\pi i/4}\over \sqrt{p}} \sum_{r=0}^{p-1} e^{\pi ir^2q/p}.
\end{displaymath} (4)

Such sums are important in the theory of Quadratic Residues.

See also Kloosterman's Sum, Schaar's Identity, Singular Series


References

Evans, R. and Berndt, B. ``The Determination of Gauss Sums.'' Bull. Amer. Math. Soc. 5, 107-129, 1981.

Katz, N. M. Gauss Sums, Kloosterman Sums, and Monodromy Groups. Princeton, NJ: Princeton University Press, 1987.

Riesel, H. Prime Numbers and Computer Methods for Factorization, 2nd ed. Boston, MA: Birkhäuser, pp. 132-134, 1994.




© 1996-9 Eric W. Weisstein
1999-05-25