info prev up next book cdrom email home

Gram's Inequality

Let $f_1(x)$, ..., $f_n(x)$ be Real Integrable Functions over the Closed Interval $[a, b]$, then the Determinant of their integrals satisfies


\begin{displaymath}
\left\vert\matrix{ \int_a^b {f_1}^2(x)\,dx & \int_a^bf_1(x)f...
...)f_n(x)\,dx\cr}\right\vert\geq 0.\hrule width 0pt height 9.2pt
\end{displaymath}

See also Gram-Schmidt Orthonormalization


References

Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 5th ed. San Diego, CA: Academic Press, p. 1100, 1979.




© 1996-9 Eric W. Weisstein
1999-05-25