info prev up next book cdrom email home

Harmonic Conjugate Function

The harmonic conjugate to a given function $u(x,y)$ is a function $v(x,y)$ such that

\begin{displaymath}
f(x,y) = u(x,y)+v(x,y)
\end{displaymath}

is Complex Differentiable (i.e., satisfies the Cauchy-Riemann Equations). It is given by

\begin{displaymath}
v(z) = \int u_x\,dy-u_y\,dx.
\end{displaymath}




© 1996-9 Eric W. Weisstein
1999-05-25