info prev up next book cdrom email home

Harmonic Coordinates

Satisfy the condition

\begin{displaymath}
\Gamma^\lambda \equiv g^{\mu\nu} {\Gamma_{\mu\nu}}^\lambda=0,
\end{displaymath} (1)

or equivalently,
\begin{displaymath}
{\partial \over \partial x^\kappa} \left({\sqrt{g} \,g^{\lambda\kappa}}\right)=0.
\end{displaymath} (2)

It is always possible to choose such a system. Using the d'Alembertian Operator,
\begin{displaymath}
\vbox{\hrule height.6pt\hbox{\vrule width.6pt height6pt \ker...
...pa}
- \Gamma^\lambda {\partial \phi\over \partial x^\lambda}.
\end{displaymath} (3)

But since $\Gamma^\lambda\equiv 0$ for harmonic coordinates,
\begin{displaymath}
\vbox{\hrule height.6pt\hbox{\vrule width.6pt height6pt \kern6.4pt \vrule width.6pt}
\hrule height.6pt}^2 x^\mu=0.
\end{displaymath} (4)




© 1996-9 Eric W. Weisstein
1999-05-25