info prev up next book cdrom email home

Harmonic-Geometric Mean

Let

\begin{eqnarray*}
\alpha_{n+1}&=&{2\alpha_n\beta_n\over \alpha_n+\beta_n}\\
\beta_{n+1}&=&\sqrt{\alpha_n\beta_n},
\end{eqnarray*}



then

\begin{displaymath}
H(\alpha_0, \beta_0)\equiv \lim_{n\to\infty} a_n = {1\over M({\alpha _0}^{-1},{\beta _0}^{-1})},
\end{displaymath}

where $M$ is the Arithmetic-Geometric Mean.

See also Arithmetic Mean, Arithmetic-Geometric Mean, Geometric Mean, Harmonic Mean




© 1996-9 Eric W. Weisstein
1999-05-25