info prev up next book cdrom email home

Helmholtz Differential Equation--Conical Coordinates

In Conical Coordinates, Laplace's Equation can be written

\begin{displaymath}
{\partial^2V\over\partial\alpha^2}+{\partial^2V\over\partial...
...}
\left({\lambda^2{\partial V\over\partial\lambda}}\right)=0,
\end{displaymath} (1)

where
$\displaystyle \alpha$ $\textstyle =$ $\displaystyle \int_a^\mu {d\mu\over\sqrt{(\mu^2-a^2)(b^2-\mu^2)}}$ (2)
$\displaystyle \beta$ $\textstyle =$ $\displaystyle \int_0^\nu {d\nu\over\sqrt{(a^2-\nu^2)(b^2-\nu^2)}}$ (3)

(Byerly 1959). Letting
\begin{displaymath}
V=U(u)R(r)
\end{displaymath} (4)

breaks (1) into the two equations,
\begin{displaymath}
{d\over dr}\left({r^2{dR\over dr}}\right)=m(m+1)R
\end{displaymath} (5)


\begin{displaymath}
{\partial^2U\over\partial\alpha^2}+{\partial^2U\over\partial\beta^2}+m(m+1)(\mu^2-\nu^2)U=0.
\end{displaymath} (6)

Solving these gives
\begin{displaymath}
R(r)=Ar^m+Br^{-m-1}
\end{displaymath} (7)


\begin{displaymath}
U(u)=E_m^p(\mu)E_m^p(\nu),
\end{displaymath} (8)

where $E_m^p$ are Ellipsoidal Harmonics. The regular solution is therefore
\begin{displaymath}
V=Ar^mE_m^p(\mu)E_m^p(\nu).
\end{displaymath} (9)

However, because of the cylindrical symmetry, the solution $E_m^p(\mu)E_m^p(\nu)$ is an $m$th degree Spherical Harmonic.


References

Arfken, G. ``Conical Coordinates $(\xi_1, \xi_2, \xi_3)$.'' §2.16 in Mathematical Methods for Physicists, 2nd ed. Orlando, FL: Academic Press, pp. 118-119, 1970.

Byerly, W. E. An Elementary Treatise on Fourier's Series, and Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics. New York: Dover, p. 263, 1959.

Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 514 and 659, 1953.




© 1996-9 Eric W. Weisstein
1999-05-25