info prev up next book cdrom email home

Identity Matrix

The identity matrix is defined as the Matrix ${\hbox{\sf 1}}$ (or ${\hbox{\sf I}}$) such that

\begin{displaymath}
{\hbox{\sf I}}({\bf X}) \equiv {\bf X}
\end{displaymath}

for all Vectors ${\bf X}$. The identity matrix is

\begin{displaymath}
I_{ij} = \delta_{ij}
\end{displaymath}

for $i,j = 1, 2$, ..., $n$, where $\delta_{ij}$ is the Kronecker Delta. Written explicitly,

\begin{displaymath}
{\hbox{\sf I}} = \left[{\matrix{
1 & 0 & \cdots & 0\cr
0 &...
...& \vdots & \ddots & \vdots\cr
0 & 0 & \cdots & 1\cr}}\right].
\end{displaymath}




© 1996-9 Eric W. Weisstein
1999-05-26