info prev up next book cdrom email home

Kantorovich Inequality

Suppose $x_1<x_2<\ldots<x_n$ are given Positive numbers. Let $\lambda_1$, ..., $\lambda_n\geq 0$ and $\sum_{j=1}^n \lambda_j
=1$. Then

\begin{displaymath}
\left({\sum_{j=1}^n \lambda_j x_j}\right)\left({\sum_{j=1}^n\lambda_j{x_j}^{-1}}\right)\leq A^2G^{-2},
\end{displaymath}

where
$\displaystyle A$ $\textstyle =$ $\displaystyle {\textstyle{1\over 2}}(x_1+x_n)$  
$\displaystyle G$ $\textstyle =$ $\displaystyle \sqrt{x_1x_n}$  

are the Arithmetic and Geometric Mean, respectively, of the first and last numbers.


References

Pták, V. ``The Kantorovich Inequality.'' Amer. Math. Monthly 102, 820-821, 1995.




© 1996-9 Eric W. Weisstein
1999-05-26