info prev up next book cdrom email home

L'Huilier's Theorem

Let a Spherical Triangle have sides of length $a$, $b$, and $c$, and Semiperimeter $s$. Then the Spherical Excess $\Delta$ is given by


\begin{displaymath}
\tan({\textstyle{1\over 4}}\Delta)=\sqrt{\tan({\textstyle{1\...
...\textstyle{1\over 2}}(s-b)]\tan[{\textstyle{1\over 2}}(s-c)]}.
\end{displaymath}

See also Girard's Spherical Excess Formula, Spherical Excess,Spherical Triangle


References

Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 148, 1987.




© 1996-9 Eric W. Weisstein
1999-05-26