The semiperimeter on a figure is defined as
|
(1) |
where is the Perimeter. The semiperimeter of Polygons appears in unexpected ways in the
computation of their Areas. The most notable cases are in the Altitude, Exradius, and
Inradius of a Triangle, the Soddy Circles, Heron's Formula for the Area of a
Triangle in terms of the legs , , and
|
(2) |
and Brahmagupta's Formula for the Area of a Quadrilateral
|
(3) |
The semiperimeter also appears in the beautiful L'Huilier's Theorem about Spherical Triangles.
For a Triangle, the following identities hold,
Now consider the above figure. Let be the Incenter of the Triangle
, with , , and the tangent points of the Incircle.
Extend the line with . Note that the pairs of
triangles , , are congruent. Then
Furthermore,
(Dunham 1990). These equations are some of the building blocks of Heron's derivation of
Heron's Formula.
References
Dunham, W. ``Heron's Formula for Triangular Area.'' Ch. 5 in
Journey Through Genius: The Great Theorems of Mathematics. New York: Wiley, pp. 113-132, 1990.
© 1996-9 Eric W. Weisstein
1999-05-26