The Area of a Surface is the amount of material needed to ``cover'' it completely. The Area of a Triangle is
given by
(1) |
(2) |
(3) |
(4) |
(5) |
Calculus and, in particular, the Integral, are powerful tools for computing the Area between a curve
and the x-Axis over an Interval , giving
(6) |
(7) |
(8) | |||
(9) |
For the Area of special surfaces or regions, see the entry for that region. The generalization of Area to 3-D is called Volume, and to higher Dimensions is called Content.
See also Arc Length, Area Element, Content, Surface Area, Volume
References
Gray, A. ``The Intuitive Idea of Area on a Surface.'' §13.2 in Modern Differential Geometry of Curves and Surfaces.
Boca Raton, FL: CRC Press, pp. 259-260, 1993.
© 1996-9 Eric W. Weisstein