info prev up next book cdrom email home

Inradius

The radius of a Triangle's Incircle or of a Polyhedron's Insphere, denoted $r$. For a Triangle,

$\displaystyle r$ $\textstyle =$ $\displaystyle {1\over 2}{\sqrt{(b+c-a)(c+a-b)(a+b-c)\over a+b+c}} = {\Delta\over s}$ (1)
  $\textstyle =$ $\displaystyle 4R\sin({\textstyle{1\over 2}}\alpha_1)\sin({\textstyle{1\over 2}}\alpha_2)\sin({\textstyle{1\over 2}}\alpha_3),$ (2)

where $\Delta$ is the Area of the Triangle, $a$, $b$, and $c$ are the side lengths, $s$ is the Semiperimeter, and $R$ is the Circumradius (Johnson 1929, p. 189).


Equation (1) can be derived easily using Trilinear Coordinates. Since the Incenter is equally spaced from all three sides, its trilinear coordinates are 1:1:1, and its exact trilinear coordinates are $r:r:r$. The ratio $k$ of the exact trilinears to the homogeneous coordinates is given by

\begin{displaymath}
k={2\Delta\over a+b+c}={\Delta\over s}.
\end{displaymath} (3)

But since $k=r$ in this case,
\begin{displaymath}
r=k={\Delta\over s},
\end{displaymath} (4)

Q. E. D.


Other equations involving the inradius include

\begin{displaymath}
Rr={abc\over 4s}
\end{displaymath} (5)


\begin{displaymath}
\Delta^2=rr_1r_2r_3
\end{displaymath} (6)


\begin{displaymath}
\cos A+\cos B+\cos C=1+{r\over R}
\end{displaymath} (7)


\begin{displaymath}
r=2R\cos A\cos B\cos\ C
\end{displaymath} (8)


\begin{displaymath}
a^2+b^2+c^2=4rR+8R^2,
\end{displaymath} (9)

where $r_i$ are the Exradii (Johnson 1929, pp. 189-191).


As shown in Right Triangle, the inradius of a Right Triangle of integral side lengths $x$, $y$, and $z$ is also integral, and is given by

\begin{displaymath}
r={xy\over x+y+z},
\end{displaymath} (10)

where $z$ is the Hypotenuse. Let $d$ be the distance between inradius $r$ and Circumradius $R$, $d=\overline{rR}$. Then
\begin{displaymath}
R^2-d^2=2Rr
\end{displaymath} (11)


\begin{displaymath}
{1\over R-d}+{1\over R+d}={1\over r}
\end{displaymath} (12)

(Mackay 1886-87). These and many other identities are given in Johnson (1929, pp. 186-190).


Expressing the Midradius $\rho$ and Circumradius $R$ in terms of the midradius gives

$\displaystyle r$ $\textstyle =$ $\displaystyle {\rho^2\over\sqrt{\rho^2+{\textstyle{1\over 4}}a^2}}$ (13)
$\displaystyle r$ $\textstyle =$ $\displaystyle {R^2-{\textstyle{1\over 4}}a^2\over R}$ (14)

for an Archimedean Solid.

See also Carnot's Theorem, Circumradius, Midradius


References

Johnson, R. A. Modern Geometry: An Elementary Treatise on the Geometry of the Triangle and the Circle. Boston, MA: Houghton Mifflin, 1929.

Mackay, J. S. ``Historical Notes on a Geometrical Theorem and its Developments [18th Century].'' Proc. Edinburgh Math. Soc. 5, 62-78, 1886-1887.

Mackay, J. S. ``Formulas Connected with the Radii of the Incircle and Excircles of a Triangle.'' Proc. Edinburgh Math. Soc. 12, 86-105.

Mackay, J. S. ``Formulas Connected with the Radii of the Incircle and Excircles of a Triangle.'' Proc. Edinburgh Math. Soc. 13, 103-104.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-26